期刊文献+

一种适合移动云节点的可靠存储模型 被引量:1

A Reliable Storage Model and Transmission Mechanism for the Mobile Cloud Node
在线阅读 下载PDF
导出
摘要 多维异构的情况下,完全副本的存储方式网络传输负担重,单个节点的能耗消耗大,可用性低。针对于此,该文提出了两种适合移动节点的存储模型:1)交叉存储策略;2)比例存储策略。模型中移动节点不再存储数据的完全副本,同时根据移动节点的带宽差异性的特点,将存储和并行传输统筹考虑,降低速度缓慢节点对于整体性能的影响。实验表明,该文并行传输模型相比传统的传输算法,既聚集了较大的带宽,也节省了存储空间。 In the case of multi-dimensional heterogeneous networks, the full copy of storage data caused a heavy burden on the network and a single node's huge energy consumption, thus, the availability of system is very low. In view of this, the paper proposes two storage models for mobile nodes: the cross storage strategy and the storage strategy according to the proportion. In this model, the mobile node no longer stores the full copy of the data, and at the same time, according to the characteristics of the bandwidth of mobile nodes, the storage and parallel transmission are considered together to reduce the impact of the slow speed of nodes on the performance of the whole. Experiments show that the proposed parallel transmission model is more efficient than the traditional transmission algorithm in both bandwidth utility and storage space saving.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第1期113-117,134,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61073042) 黑龙江省教育厅项目(12531189) 中国博士后基金面上项目(2014M561330)
关键词 云计算 交叉存储 移动节点 并行传输 cloud computing cross storage mobile node parallel transmission
作者简介 姜春茂(1972-),男,博士,教授,主要从事移动P2P、云计算、嵌入式计算方面的研究.
  • 相关文献

参考文献12

  • 1ZENG Wen-ying, ZHAO Yue-long, OU Kai-ri, et al. Research on cloud storage architecture and key technologies[C]//Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human. New York: ACM, 2009.
  • 2PAMIES-JUAREZ L, GARCIA L P, ARTIGAS S M. Availability and redundancy in harmony: Measuring retrieval times in p2p storage systems[C]//IEEE Tenth International Conference on Peer-to-Peer Computing(P2P). Delft Netherlands: IEEE, 2010.
  • 3LIU Shuo, REN Shao-lei, QUAN Gang, et al. Profit aware load balancing for distributed cloud data centers[C]//27th International Symposium on Parallel & Distributed Processing (IPDPS). Boston: IEEE, 2013: 126-135.
  • 4陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348. 被引量:1315
  • 5冯国富,李文中,张金城,陆桑璐,陈道蓄.无结构覆盖网络中面向搜索范围最小化的副本分布[J].计算机学报,2011,34(4):628-635. 被引量:7
  • 6PRABAVATHY B, PRIYA K, BABU C. A load balancing algorithm for private cloud storage[C]//Fourth International Conference on Computing, Communications and Networking Technologies. Tiruchengode: IEEE, 2013:1-6.
  • 7PARVEZ N, WILLIAMSON C, MAHANTI A, et al. Analysis of bittorrent-like protocols for on-demand stored media streaming[C]//Proceedings of ACM Sigmetrics. Annapolis: ACM, 2008: 301-312.
  • 8XIE T, QIN X. Security-aware resource allocation for real-time parallel jobs on homogeneous and heterogeneous clusters[J]. IEEE Trans on Parallel and Distributed Systems, 2008, 19(5): 692-697.
  • 9CHRISTIAN C, KEIDAR I, SHRAER A. Trusting the cloud[J]. Newsletter ACM Sigact News, 2009, 40(2): 81-86.
  • 10ZHANG Hong, LI Bo, JIANG Hong-bo, et al. A framework for truthful online auctions in cloud computing with heterogeneous user demands[C]//2013 Proceedings IEEE Conference on Infocom. Turin: IEEE, 2013: 190-201.

二级参考文献42

  • 1Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 2Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 3Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 4Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 5Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 6Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 7Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.
  • 8Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150.
  • 9Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 335-350.
  • 10Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: A distributed storage system for structured data. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 205-218.

共引文献1320

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部