期刊文献+

电子注激励石墨烯表面等离子体激元的研究

Study on the Electron Beam Excitation of Graphene Surface Plasmon Polartions
在线阅读 下载PDF
导出
摘要 对垂直与平行运动电子注激励石墨烯表面等离子体激元进行了详细分析与对比。理论分析与数值计算的结果表明,电子注垂直激励时,石墨烯表面等离子体激元包含丰富的频率分量,沿传播方向衰减,并伴随有度越辐射;平行激励时,其工作频率可通过调节电子注能量或石墨烯化学势进行调谐,且沿传播方向没有衰减,没有渡越辐射。优化电子注能量与石墨烯化学势等参数可使电子注激励的石墨烯表面等离子体激元具有最大功率。电流密度大于500 A/cm2的直流电子注可与石墨烯表面等离子体激元发生注波互作用,从而对其进行持续地激励并放大。 Graphene surface plasmon polaritons have been widely used in terahertz devices in modem science and technologies. In this paper, the excitation of graphene surface plasmon polaritons by perpendicularly and parallel moving electron beams is investigated in details by using Maxwell equations and boundary conditions. The theoretical analysis and numerical calculations show that graphene surface plasmon polaritons excited by perpendicular electron beam contain plenty of frequency components which attenuate along with propagation, whereas those excited by parallel electron beam are coherent and ttmable, without attenuation along with propagation. The largest power of the excited graphene surface plasmon polaritons can be obtained by optimizing the electron beam energy and the chemical potential of the graphene sheet. And the further study show that graphene surface plasmon polaritons can be excited and amplified by continually moving electron beam when the current density of the beam is large enough. These results are of significance for the applications of graphene in terahertz devices.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第1期71-76,共6页 Journal of University of Electronic Science and Technology of China
基金 国家重点基础研究发展计划(2014CB339801) 国家自然科学基金(61231005 11305030 61211076) 国家高技术研究发展计划(2011AA010204)
关键词 电子注 石墨烯 表面等离子体激元 太赫兹 频率调谐 electron beam graphene surface plasmon polaritons terahertz tunable operating frequency
作者简介 龚森(1985-),男,博士生,主要从事电子注激励表面等离子体激元辐射方面的研究.
  • 相关文献

参考文献1

二级参考文献12

  • 1Heinz Raether 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Velag) p4.
  • 2Pendry J B, Martin-Moreno L and Garcia-Vidal F J 2004 Science 305 847.
  • 3Hibbins A P, Evans B R and Sambles J R 2005 Science 308 670.
  • 4Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667.
  • 5Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B and Ebbesen T W 2001 Phys. Rev. Lett. 86 1114.
  • 6Gaxcia de Abajo F J and Saenz J J 2005 Phys. Rev. Lett. 95 233901.
  • 7Lan 5( C 2006 Optics Express 14 11339.
  • 8Shin Y M, So J K, Jang K H, Won J H, Srivastava A and Park G S 2007 Phys. Rev. Lett. 99 147402.
  • 9Shen J T, Cartrysse P B and Fan S H 2005 Phys. Rev. Lett. 94 197401.
  • 10Zhou R L, Chen X S, Zeng Y, Zhang J B, Chen H B, Wang S W, Liu W, Li H J, Xia H and Wang L L 2008 Acta Phys. Sin. 57 3506 (in Chinese).

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部