期刊文献+

傅里叶重建图像法检测磁片表面刀纹缺陷 被引量:4

Surface cutting defect detection of magnet using Fourier image reconstruction
在线阅读 下载PDF
导出
摘要 磁片在被切割为更小的片时表面上可能会出现缺陷,这些缺陷将严重影响磁性材料产品的性能和使用寿命,因此表面刀纹缺陷自动检测成为磁片生产中一个重要的任务。针对经典缺陷检测算法不能很好地提取颜色暗、对比度低的磁片图像的缺陷的问题,提出一种基于傅里叶变换重建图像的磁片表面图像处理方法。用傅里叶变换获取磁片图像的频谱图像,缺陷在频谱图像中被显示为一条亮线。用霍夫变换检测亮线的角度,去除这条亮线的频率分量,使用傅里叶反变换得到去除掉缺陷的正常灰度图像。缺陷区域则可以通过评估原始图像和重建图像之间的灰度差来获得。对大量的磁片图像进行实验后表明,该方法可以准确、高效地检测磁片表面的刀纹缺陷。 Defects may appear on the surface of the magnet during cutting into smaller slice. These defects will seriously affect the performance and service life of magnetic products. So automatic surface cutting defect detection becomes an important task for magnet producing. A Fourier image reconstruction based magnet surface image process method is proposed, to the question that defect of magnet surface with dark color and low contrast can not be extracted via the classical defect detection algorithm. Fourier transform is used to get the spectrum image of the magnet image, and in the spectrum image, the defect will be shown as a bright line. Hough transform is used to detect the angle of bright line, then the frequency component of this line is removed, and revise Fourier transform is applied to get the background gray image. In the end, the defect region can be obtained by evaluating the gray-level differences between original image and reconstructed image. Experiments show that the method proposed can detect surface cutting defect of magnet accurately and efficiently.
作者 左博 王福亮
出处 《计算机工程与应用》 CSCD 北大核心 2016年第3期256-260,265,共6页 Computer Engineering and Applications
基金 湖湘青年科技创新创业平台 中南大学教师研究基金(No.2013JSJJ012) 高性能复杂制造国家重点实验室自主研究课题(No.ZZYJKT2013-01A)
关键词 缺陷检测 图像处理 磁片 傅里叶变换 defect detection image process magnet Fourier transform
作者简介 左博(1990-),男,硕士研究生,从事微电子封装技术与装备及图像处理研究; 王福亮(1979-),通讯作者,男,教授,从事微电子封装技术与装备研究,E-mail:wangfuliang@csu.edu.cn。
  • 相关文献

参考文献16

  • 1李炜,黄心汉,王敏,万国红.基于机器视觉的带钢表面缺陷检测系统[J].华中科技大学学报(自然科学版),2003,31(2):72-74. 被引量:47
  • 2李红俊,韩冀皖.数字图像处理技术及其应用[J].计算机测量与控制,2002,10(9):620-622. 被引量:99
  • 3Conners R W,Mcmillin C W,Lin K,et al.Identifying and locating surface defects in wood:part of an automated lumber processing system[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1983(6):573-583.
  • 4Pernkopf F.Detection of surface defects on raw steel blocks using Bayesian network classifiers[J].Pattern Analysis and Applications,2004,7(3):333-342.
  • 5Bharati M H,Liu J J,Mac Gregor J F.Image texture analysis:methods and comparisons[J].Chemometrics and Intelligent Laboratory Systems,2004,72(1):57-71.
  • 6Chai H Y,Wee L K,Swee T T,et al.Gray-level co-occurrence matrix bone fracture detection[J].American Journal of Applied Sciences,2011,8(1):26-32.
  • 7Zhang D,Zhao M,Zhou Z,et al.Characterization of wire rope defects with gray level co-occurrence matrix of magnetic flux leakage images[J].Journal of Nondestructive Evaluation,2013,32(1):37-43.
  • 8Venkat R K,Ramamoorthy B.Statistical methods to compare the texture features of machined surfaces[J].Pattern Recognition,1996,29(9):1447-1459.
  • 9Paschos G.Fast color texture recognition using chromaticity moments[J].Pattern Recognition Letters,2000,21(9):837-841.
  • 10Bodnarova A,Bennamoun M,Latham S.Optimal Gabor filters for textile flaw detection[J].Pattern Recognition,2002,35(12):2973-2991.

二级参考文献14

  • 1[2]Rautaruukki New Technology. Defect Classification in Surface Inspection of Strip Steel. Steel Times, 1992(5): 214~216
  • 2[3]Badger J C, Enright Sean T. Automated surface inspection system. Iron and Steel Engineer, 1996 (3): 48~51
  • 3[4]Parsytech Computer GmbH. Software controlled on-line surface inspection. Steel Times International, 1998(3): 30~35
  • 4[5]Karayiannis N B. Accelerating the training of feed forward Neural Networks using generalized hebbian rules for inintializing the internal representation. IEEE Transactions on Neural Networks, 1996, (7)2: 419~426
  • 5[6]Sking J, Jorg R. Self-learning fuzzy controllers based on temporal back propagation. IEEE Trans. on Neural Networks, 1992, 3(5): 714~723
  • 6[7]Amari S, Murata N, Muller K R, et al. Asymptotic statistical theory of overtraining and cross-validation. In: Anon. ed. METR 95-06. Tokyo: Dept. of Mathematical Engineering and Information, Physics, Univ. of Tokyo, 1995.
  • 7王润生.图像理解[M].国防科技大学出版社,1994..
  • 8章毓晋.图像处理和分析[M].北京:清华大学出版社,1999..
  • 9CastlemanKR 著 朱志刚等译.数字图像处理[M].北京:电子工业出版社,1998.266-290.
  • 10朱淼良.计算机视觉[M].杭州:浙江大学出版社,1998.

共引文献144

同被引文献38

引证文献4

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部