期刊文献+

一类脉冲时滞微分方程的动力学分析 被引量:1

Dynamic behavior of a class of impulsive delay differential equation
在线阅读 下载PDF
导出
摘要 针对脉冲时滞微分方程周期解存在的充分性条件难于检验、难于求出周期解具体表达式等问题,构造Lyapunov泛函,利用全导数得到脉冲时滞微分方程零解一致渐近稳定的充分条件,给出了脉冲时滞微分方程的周期解和T-周期解、2T-周期解的显式表达式。周期解、初始值和不同时滞下方程解的数值结果验证了理论分析的正确性。 In view of the difficulties in testing the sufficient conditions for the existence of periodic solutions and finding explicit periodic solutions, dynamic behavior of a class of impulsive delay differential equation is discussed. The sufficient conditions for uniformly asymptotically stability of trivial solutions are obtained by constructing Lyapunov funcational. Periodic solutions are discussed and the explicit solutions with period-T and period-2T are given. Numerical simulations on periodic solutions and solutions with different initial values and delays verify the theoretical analysis.
出处 《桂林电子科技大学学报》 2015年第6期485-488,共4页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(11162004) 广西自然科学基金(2012GXNSFAA053006) 广西教育厅科研项目(KY2015YB112)
关键词 脉冲时滞微分方程 一致渐近稳定 周期解 impulsive delay differential equation uniformly asymptotically stability periodic solution
作者简介 通信作者:蒋贵荣(1968-),男,湖南永州人,教授,博士,研究方向为非光滑动力系统动力学分析。E—mail:grjiang9@163.com
  • 相关文献

参考文献10

二级参考文献34

共引文献31

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部