期刊文献+

超电晕对输电线路导线、避雷线雷电吸引能力的影响研究 被引量:3

Study on the Influence of Ultra-corona on the Lightning Attracting Capability of Power Conductor and Ground Wire in Transmission Lines
在线阅读 下载PDF
导出
摘要 在雷云电荷或雷电先导的感应作用下,表面缠绕了细线的导线或导体会产生超电晕,不仅能够抑制流注的形成,还能改变周围空间的电位分布,从而对周围导体的上行先导产生影响。因此超电晕近年来被认为在提高防雷性能方面具有良好的应用前景。然而相关研究表明,由于在输电线路防雷应用时超电晕由避雷线表面产生并发展,导致由避雷线表面起始并向上发展的上行先导也被抑制,因此输电线路整体的绕击防雷性能究竟是否提高还有待商榷。基于此,该文针对应用了超电晕的输电线路开展研究,通过建立超电晕与雷电先导同步发展的仿真模型,得到了应用超电晕后导线、避雷线的雷电吸引半径表达式,详细分析了超电晕对导线、避雷线引雷能力的影响,并与未应用超电晕时的引雷能力进行对比,研究结果表明尽管超电晕的应用同时削弱了导线、避雷线的引雷能力,但由于对导线引雷能力的削弱程度更高,使得应用超电晕后的屏蔽失效宽度大幅降低,从而输电线路整体的绕击防雷性能得到提高。最后通过500kV超高压输电线路的实例进行分析与验证。 Under the induction of thundercloud charges or lightning leader, ultra-corona occurs on thin wire clad conductor surface. Ultra-corona could not only inhibit the formation of streamer, but also change the potential distribution in surrounding space and prevent the development of upward leader from surrounding conductor. Thus ultra-corona is considered to have good application prospect on lightning protection. But according to some related investigations, the application of ultra corona to transmission lines involves the initiation of ultra corona from the ground wire. This condition results in the suppression of the upward leader from the ground wire and makes it difficult to determine whether the lightning shielding performance is improved. Thus this paper presented a study on the application of ultra corona. The lateral attractive distance expressions of the ground wire and power conductor were obtained by constructing a simulation model based on the leader progression model. The influence of ultra corona on the lightning attracting capabilities of power conductor and ground wire were analyzed in detail and compared with those without ultra corona. Results show that although the lightning attracting capabilities of the ground wire and power conductor diminishe, the suppression effect of ultra corona on the power conductor is stronger, so the shielding failure width is reduced and then the shielding performance of the transmission lines is improved, which is proved and analyzed with a typical 500 kV extra-high voltage(EHV) transmission lines finally.
出处 《中国电机工程学报》 EI CSCD 北大核心 2016年第1期292-300,共9页 Proceedings of the CSEE
基金 国家创新研究群体基金(51321063)~~
关键词 超电晕 上行先导 抑制效果 雷电吸引能力 输电线路 ultra-corona upward leader inhibition effect lightning attracting capability transmission lines
作者简介 司马文霞(1965-),女,博士,教授,博士生导师,主要从事电力系统的防雷与过电压防护研究、特殊环境中外绝缘放电特性及机理的研究等,cqsmwx@cqu.edu.cn; 范硕超(1987-),男,博士研究生,中嘤从事高电压与绝缘技术方面的研究 杨庆(1981-),男,博士,教授,硕导,主要从事电力系统过电压及其绝缘配合和复杂环境下输电线路外绝缘特性及放电机理的研究 杨鸣(1987-),男,博士研究生,主要从事电力系统过电压防护的研究; 王琦(1990-),女,硕士研究生,研究方向为高电压与绝缘技术; 许航(1990-),男,硕士研究生,研究方向为高电压与绝缘技术。
  • 相关文献

参考文献31

  • 1Les Renardi6res Group. Long air gap discharges at les renardi6res: 1973results[J]. Electra, 1972(23): 53-157.
  • 2Les Renardi6res Group. Long air gap discharges at les renardires: 1973 results[J]. Electra, 1974(35): 49-156.
  • 3Rizk F A M. A model for switching impulse leader inception and breakdown of long air gaps[J]. IEEE Transactions on Power Delivery, 1989, 4(1): 596-606.
  • 4Uhlig C A E. The ultra corona discharge, a new phenomenon occurring on thin wires[C]//High Voltage Symposium , National Research Council of Canada. Ottawa, ON, Canada, 1956.
  • 5Popkov V I. Some special features of corona on high voltage DC transmission lines[J]. Gas Discharges and the Electricity Supply Industry Paper, 1962(38): 225-237.
  • 6Heroux P, Maruvada P S, Trinh N G. High voltage ACtransmission lines: Reduction of corona under foul weather[J]. IEEE Transactions on Power Apparatus and Systems, 1982, PAS-101(9): 3009-3017.
  • 7Bazelyan E M, Raizer Yu P. The mechanism oflighming attraction and the problem of lightning initiation by lasers[J]. Physics-uspekhi, 2000, 43(7): 701-716.
  • 8Aleksandrov N L, Bazelyan E M, Carpenter R B Jr, et al. The effect of coronae on leader initiation and development under thunderstorm conditions and in long air gaps[J]. Journal of Physics D: Applied Physics, 2001, 34(22): 3256-3266.
  • 9Aleksandrov N L, Bazelyan E M, Drabkin M M, et al. Corona discharge at the tip of a high object in the electric field of a thundercloud[J]. Plasma Physics Reports, 2002, 28(11): 953-964.
  • 10Aleksandrov N L, Bazelyan E M, D'Alessandro F, et al. Dependence of lightning rod efficacy on its geometric dimensions-a computer simulation[J]. Journal of Physics D: Applied Physics, 2005, 38(8): 1225-1238.

二级参考文献62

  • 1张云芳,堀井宪尔.针电极在雷云电场下电晕电流的研究[J].中国电机工程学报,1993,13(2):55-59. 被引量:7
  • 2张其林,郄秀书,王怀斌,陈成品,张广庶,张彤.近距离负地闪电场波形的观测分析与数值模拟[J].中国电机工程学报,2005,25(18):126-130. 被引量:15
  • 3Golde R H.Lightning[M].New York:Academic Press,1977:44-45.
  • 4Cooray V.The lightning Protection[M].London:Institution of Engineering and Technology,2010:166-167.
  • 5Van Brunt R J,Nelson T L,Stricklett K L.Early streamer emission lightning protection systems:An overview[J].IEEE Electrical Insulation Magazine,2000,16(1):5-24.
  • 6Berger G.The early streamer emission lightning rod conductor[C]//Proceedings of the 15th International Conference on Aerospace and Ground.Atlanta City,United States:IEEE Power & Energy Society,1992:131-134.
  • 7Grzybowski S,Libby A L,Jenkins E B,et al.DC dissipation current from elements used for lightning protection on 115 kV transmission lines[C]//IEEE Proceedings of Southeastcon.Williamsburg,United States:IEEE Power & Energy Society,1991:1250-1254.
  • 8Becerra M,Cooray V.Laboratory experiments cannot be utilized to justify the action of early streamer emission terminals[J].Journal of Physics D:Applied Physics,2008,41(8):1-8.
  • 9Uman M A.The lightning discharge[M].Orlando:Academic press,1987:134-138.
  • 10Warner T A.Obervations of simultaneous multiple upward leaders from tall structures[C]//Proceedings of the 30th International Conference on Lightning Protection.Cagliari,Italy:University of Cagliari,2010:1071-1073.

共引文献50

同被引文献30

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部