3TONELLI M, PETTI M. Hybrid finite volume-finite difference scheme for 2DH improved Boussinesq equations[J]. Coastal Engineering, 2009, 56: 609- 620.
4KIP.BY J T. Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced currents[M]. New York: Elsevier Science, 2002: 1-41.
6Madsen P. A., SФrensen O. R. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry[J].Coastal Engineerin g, 1992, 18 (3-4): 183-204.
7Kim G., Lee C., Suh K. Extended Boussinesq equations for rapidly varying topography[J]. Ocean Engineering, 2009, 36 ( 11 ): 842-851.
8Orszaghova J, Borthwiek A.G.L.and Tyalor P H. From the paddle to the beach-a boussinesq shallow water numerical tank based on madsen and Sorensen' s equations[J]. Journal of Computional Physics, 2011 : 231 ; 328-344.
9Shi F., KirbyJ. T., HarrisJ. C., et al. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[J]. Ocean Modelling, 2012, 43-44 (0): 36-51.
3Roe, P. L., 1981. Approximate Riemann solvers, parameter vectors, and different schemes, J. Computational Physics, 43(2): 357-372.
4Rogers, B., Fujihara, M. and Alistair, G. L., 2001. Adaptive Q-tree godunov-type scheme for shallow water equation. Int. J. Numer. Methods in Fluids, 35:247-280.
5Steger, J. and Warming, R., 1981. Flux vector splitting of the inviscid gasdynamic equations with applications to finite difference methods, J. Computational Physics, 40(2): 263-293.
6Sweby, P. K., 1984. High resolution schemes using flux limiters for hyperbolic conservation law, SIAM J. Numer. Anal., 21(5): 995-1011.
7Thacker, W. C., 1981. Some exact solutions to the nonlinear shallow-water wave equations, J. Fluid Mech, 107: 499-508.
8van Leer, B., 1973. Towards the ultimate conservative difference scheme, I. The quest of monotonicity, Lecture Notes in Phys., 18: 163-168.
9Anastasiou, K. and Chan, C. T., 1997. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes, Int. J. Numer. Methods Fluids, 24(4): 1225-1245.
10Bellotti, G. and Brocchini, M., 2001. On the shoreline boundary conditions for Boussinesq-type models, Int. J. Numer. Methods Fluids, 37(4): 479-500.