期刊文献+

有限体积法在Boussinesq方程模拟孤立波中的应用 被引量:1

在线阅读 下载PDF
导出
摘要 将有限体积法应用到Boussinesq方程的求解当中。在守恒形式的一维Boussinesq方程中,采用有限体积方法求解数值通量,有限差分方法求解其余项。与单独采用有限差分方法求解相比,避免了通过引入可调参数处理波浪破碎带来的不确定性。
出处 《中国水运(下半月)》 2015年第12期102-104,共3页
作者简介 张敬卫(1988-),男,河南新乡人,长江南京航道工程局助理工程师,主要从事海岸动力学与水运方面工作与研究。
  • 相关文献

参考文献12

  • 1邹志利.海岸动力学[M].北京:人民交通出版社,1988.
  • 2房克照,刘忠波,唐军,邹志利,尹继伟.潜礁上孤立波传播的数值模拟[J].哈尔滨工程大学学报,2014,35(3):295-300. 被引量:18
  • 3TONELLI M, PETTI M. Hybrid finite volume-finite difference scheme for 2DH improved Boussinesq equations[J]. Coastal Engineering, 2009, 56: 609- 620.
  • 4KIP.BY J T. Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced currents[M]. New York: Elsevier Science, 2002: 1-41.
  • 5房克照,邹志利,孙家文,刘忠波.扩展型Boussinesq水波方程的混合求解格式[J].水科学进展,2013,24(5):699-705. 被引量:8
  • 6Madsen P. A., SФrensen O. R. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry[J].Coastal Engineerin g, 1992, 18 (3-4): 183-204.
  • 7Kim G., Lee C., Suh K. Extended Boussinesq equations for rapidly varying topography[J]. Ocean Engineering, 2009, 36 ( 11 ): 842-851.
  • 8Orszaghova J, Borthwiek A.G.L.and Tyalor P H. From the paddle to the beach-a boussinesq shallow water numerical tank based on madsen and Sorensen' s equations[J]. Journal of Computional Physics, 2011 : 231 ; 328-344.
  • 9Shi F., KirbyJ. T., HarrisJ. C., et al. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[J]. Ocean Modelling, 2012, 43-44 (0): 36-51.
  • 10房克照,邹志利,王艳.An Explicit High Resolution Scheme for Nonlinear Shallow Water Equations[J].China Ocean Engineering,2005,19(3):349-364. 被引量:2

二级参考文献57

  • 1李绍武,李春颖,谷汉斌,时钟.一种改进的近岸波浪破碎数值模型[J].水科学进展,2005,16(1):36-41. 被引量:13
  • 2房克照,邹志利,王艳.An Explicit High Resolution Scheme for Nonlinear Shallow Water Equations[J].China Ocean Engineering,2005,19(3):349-364. 被引量:2
  • 3Roe, P. L., 1981. Approximate Riemann solvers, parameter vectors, and different schemes, J. Computational Physics, 43(2): 357-372.
  • 4Rogers, B., Fujihara, M. and Alistair, G. L., 2001. Adaptive Q-tree godunov-type scheme for shallow water equation. Int. J. Numer. Methods in Fluids, 35:247-280.
  • 5Steger, J. and Warming, R., 1981. Flux vector splitting of the inviscid gasdynamic equations with applications to finite difference methods, J. Computational Physics, 40(2): 263-293.
  • 6Sweby, P. K., 1984. High resolution schemes using flux limiters for hyperbolic conservation law, SIAM J. Numer. Anal., 21(5): 995-1011.
  • 7Thacker, W. C., 1981. Some exact solutions to the nonlinear shallow-water wave equations, J. Fluid Mech, 107: 499-508.
  • 8van Leer, B., 1973. Towards the ultimate conservative difference scheme, I. The quest of monotonicity, Lecture Notes in Phys., 18: 163-168.
  • 9Anastasiou, K. and Chan, C. T., 1997. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes, Int. J. Numer. Methods Fluids, 24(4): 1225-1245.
  • 10Bellotti, G. and Brocchini, M., 2001. On the shoreline boundary conditions for Boussinesq-type models, Int. J. Numer. Methods Fluids, 37(4): 479-500.

共引文献24

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部