摘要
发展一个求解具有尖波解的Camassa-Holm方程的高阶局部中心间断Galerkin有限元法,该方法首先将Camassa-Holm方程改写为一个守恒律方程和一阶方程组的耦合系统,然后,使用局部中心间断Galerkin法求解该守恒律和使用有限元法求解一阶方程组,数值算例用来检验该方法的精度和有效性.
In this paper, we develop high order local central discontinuous Galerkin-finite element methods for solving the Ca- massa-Holm equation which supports peakon solutions. In our numerical approach, we first reformulate the Carnassa-Holm equation into a conservation law coupled with a system of first order equations. Then we propose a family of high order numerical methods which dis- cretize the conservation law with local central discontinuous Galerkin methods and the system of first order equations with continuous fi- nite element methods. Numerical tests are presented to illustrate the accuracy and validity of the proposed schemes.
出处
《四川师范大学学报(自然科学版)》
CAS
北大核心
2015年第6期871-874,共4页
Journal of Sichuan Normal University(Natural Science)
基金
重庆市自然科学基金一般项目(CSTC2012JJA00005)
作者简介
马健军(1983-),男,讲师,主要从事偏微分方程数值解的研究,E-mail:majianjun425@163.coM