期刊文献+

多尺度高维亚式期权定价的奇摄动解 被引量:1

Solution to multiscale Asian option pricing model with the singular perturbation method
在线阅读 下载PDF
导出
摘要 讨论了一类含有快慢变换尺度的高维亚式期权定价随机波动率模型.根据Girsanov定理和Radon-Nikodym导数实现了期望回报率与无风险利率之间的转化;定义路径依赖型的新算术平均算法,借助Feynman-Kac公式,得到了风险资产期权价格所满足的相应的Black-Scholes方程,运用奇摄动渐近展开方法,得到了期权定价方程的渐近解,并得到其一致有效估计. A type of stochastic volatility model which includes fast-slow alternate multiple scales of high dimension Asian option pricing problem is discussed in this paper. According to Girsanov theorem and Radon-Nikodym, it realizes a transformation between expected return rate and no risk interest rate; Defining the new arithmetic average algorithm of path-dependent options and using Feynman-Kac's formula, the Black-Scholes model is formed in which the risky assets of multiscale Asian option prices. A singular perturbation expansion is used to derive an approximation for multiscale Asian option pricing equation and the uniform valid estimation is derived.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2015年第4期389-398,共10页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(51175134)
关键词 多尺度 亚式期权 随机波动率 奇摄动 余项估计 multiple scales Asian options stochastic volatility singular perturbation remainder term estimation
  • 相关文献

参考文献3

二级参考文献18

  • 1Fouque J P, Papanicolaou G, Sircar R K. Derivatives in Financial Markets with Stochastic Volatility. Cambridge: Cambridge University Press, 2000.
  • 2Fouque J P, Papanicolaou G, Sircar R K, Solna K. Singular Perturbations in Option Pricing. SIAM J. Appl. Math., 2003, 63(5): 1648-1665.
  • 3Khasminskii R Z, Yin G. Uniform Asymptotic Expansions for Pricing European Options. Appl. Math. Optim., 2005, 52(3): 279-296.
  • 4Hull J. Options, Futures and Other Derivatives. 5th ed., Beijing: Tsinghua University Press, 2006.
  • 5Klebaner F C. Introduction to Stochastic Calculus with Application. London: Imperical College Press, 1998.
  • 6Фksendal B. Stochastic Differential Equations: an Introduction with Applications. 6th ed., Heidelberg, New York: Springer-Verlag, 2005.
  • 7Wu Z Q, Yin J X, Wang C P. Elliptic and Parabolic Equations. Beijing: Science Press, 2003 .
  • 8Jiang L S. Mathematical Modeling and Methods of Option Pricing. Beijing: Higher Education Press, 2003 .
  • 9Wong H Y, Chan M C. Lookback Options and Dynamic fund Protection under Multiscale Stochastic Volatility. Insur. Math. Econ., 2007, 40(3): 357- 385.
  • 10Fouque J P, Han C H. Pricing Asian options with stochastic volatility [J]. Quantitative Finance, 2003, 3(5): 353-362.

共引文献4

同被引文献10

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部