期刊文献+

基于多变量状态估计的风电机组齿轮箱温度监测方法 被引量:7

The Monitoring Method of Wind Turbine Gearbox Temperature Based on the MSET
在线阅读 下载PDF
导出
摘要 风电机组的故障诊断是大型风电场运行中亟待解决的问题。由于风力发电的特殊性,大部分风电场都是在边远地区,风机与风机之间的距离更高,不能像火电或水电等设施,以方便检查,因此如何实现故障诊断的风力发电机组设备的状态是特别重要的。本文利用多变量状态估计(Multivariate State Estimation Technique)方法对齿轮箱的温度进行状态监测,通过对设备正常工作状态下的历史数据进行学习,对系统各个参数之间的关系进行定义,通过相关性分析来建立正常运行状态下多个相关变量间的内在非线性模型。然后,利用滑动窗口的统计方法,计算残差均值,当平均值曲线超出阈值范围时,设备运行异常。 The prediction of wind turbine faults becomes a urgent problem in large-scale wind farm operation.Becauseofthep articularity of wind power, most wind turbines are built in remote areas and the distance between wind turbines is very huge. As-well as the height of the wind turbines is very high, it can not be repaired conveniently like other coal-fired power plants.So it is urgenttofindthediagnosticmethodofwindturbineswhichisbasedonothertheory. The method of Multivariate State Estimation Technique is used to predict the temperature of the gearbox in this paper. Through the studying of the history data, the inherent nonlinear model is conducted. An appropriate threshold is set to measure the condition of the wind turbine.
出处 《仪器仪表用户》 2015年第6期58-61,共4页 Instrumentation
关键词 滑动窗口统计 齿轮箱温度 残差 MSET MSET statistics sliding window gearbox temperature residuals
作者简介 张艳霞(1988-),女,山东济宁人,在读硕士研究生,主要从事风电机组状态监测与故障预测方面的研究。
  • 相关文献

参考文献12

  • 1Hameed Z,Hong Y S,Cho Y M,et al. Condition monitoring and fault detection of wind turbines and related algorithms. a review[J]. Renewable and Sustainable Energy Reviews, 2009,13(1}: 1-39.
  • 2Amirat Y,Benbouzid M,AI-Ahmar E. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[] Renewable and Sustainable Energy Reviews, 2009,13(9): 2629-2636.
  • 3Lu Bin,Li Yaoyu,Wu Xin. A review of recent advance in wind turbine condition monitoring and fault diagnosis [C]// Proceedings of Power Electronics and Machines in Wind Application,Lincoln,2009: 1-7.
  • 4Yang Wenxian,Tavner P J,Crabtree C J,et al. Cost- effective condition monitoring for wind turbines[J]. IEEE Trans Industrial Electronics,2010,57(1) : 263-271.
  • 5Simon J W,Xiang B J,Yang Wenxian. Condition monitoring of the power output of wind turbine generators using wavelets[J]. IEEE Trans. on Energy Conversion,2010,25(3) : 715-721.
  • 6Yang W,Tavner P J,Wilkinson M lk. Condition monitoring and fault diagnosis of a wind turbine synchronous generator drive train[J]. Renewable Power Generation,2009,3(1). 1-11.
  • 7Wilkinson M R,Tavner P J. Condition monitoring of generators & other subassemblies in wind turbine drive trains[J] . Proceedings of IEEE International Symposium on Diagnostics for Electric Machines,Power Electrics and Drives,Cracow,2007.
  • 8张照煌,丁显,刘曼,曾菊瑛.基于小波变换的风电机组传动系统故障诊断与分析[J].应用基础与工程科学学报,2011,19(S1):210-218. 被引量:16
  • 9Zaher A,McArther S D J,Infield D G,et al. Online wind turbine fault detection through automated scada data analysis[J]. Wind Energy,2009,12(6).- 574-593.
  • 10赵洪山,胡庆春,李志为.基于统计过程控制的风机齿轮箱故障预测[J].电力系统保护与控制,2012,40(13):67-73. 被引量:46

二级参考文献41

  • 1张照煌,张行.风力发电聚能型风轮理论及应用研究[J].应用基础与工程科学学报,2010,18(S1):220-224. 被引量:6
  • 2杨延西,刘丁.基于小波变换和最小二乘支持向量机的短期电力负荷预测[J].电网技术,2005,29(13):60-64. 被引量:85
  • 3梁平,范立莉,龙新峰.非线性模型在汽轮发电机组振动故障预测中的应用[J].华南理工大学学报(自然科学版),2006,34(6):122-126. 被引量:8
  • 4Crabtree C J, Feng Y, Tavner P J. Detecting incipient wind turbine gearbox failure., a signal analysis method for on-line condition monitoring[C]//Proceeding of European Wind Energy Conference, Poland, 2010.
  • 5Hameed Z, Hong Y S, Cho Y M, et al. Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 1-39.
  • 6Amirat Y, Benbouzid M, A1-Ahmar E. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2629-2636.
  • 7Lu Bin, Li Yaoyu, Wu Xin. A review of recent advance in wind turbine condition monitoring and fault diagnosis [C]//Proceedings of Power Electronics and Machines in Wind Application, Lincoln, 2009: 1-7.
  • 8Zaher A, McArther S D J, Infield D G, et al. Online wind turbine fault detection through automated scada data analysis[J]. Wind Energy , 2009, 12(6): 574-593.
  • 9Yang Wenxian, Tavner P J, Crabtree C J, et al. Costeffective condition monitoring for wind turbines[J]. IEEE TranslndustrialElectronics, 2010, 57(1): 263-271.
  • 10Simon J W, Xiang B J, Yang Wenxian. Condition monitoring of the power output of wind turbine generators using wavelets[J]. IEEE Trans. on Energy Conversion, 2010, 25(3): 715-721.

共引文献169

同被引文献29

引证文献7

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部