期刊文献+

基于信息熵的多无源传感器数据关联 被引量:2

Data association for multi-passive-sensor based on information entropy
在线阅读 下载PDF
导出
摘要 针对多维分配模型在构造关联代价函数时,直接利用极大似然估计值代替目标的真实位置信息,未考虑极大似然估计所引入的随机误差问题,提出一种基于信息熵的多无源传感器数据关联算法。考虑到量测后验概率密度函数与伪量测概率密度函数之间的差异性,分别利用相对熵和Renyi熵量化该差异构造关联代价函数以增强模型的完备性。仿真实验结果表明:该算法有效地提高了关联正确率,具有较好的关联性能。 Aiming at problem that multi-dimensional assignment model which uses maximum likelihood estimation as true target position has ignored the random errors when constructing the cost function,a data association algorithm is proposed based on information entropy. To improve the completeness of the multi-dimensional assignment model,relative entropy and Renyi entropy are used to quantify the difference between the probability density function of pseudo measurements and the most posterior probability density function to construct the association cost. The simulation results show that the proposed algorithm can improve the correctness and achieve better performance as well.
出处 《传感器与微系统》 CSCD 2015年第11期33-37,共5页 Transducer and Microsystem Technologies
基金 陕西省自然科学基金资助项目(2011JM8023)
关键词 无源传感器 数据关联 代价函数 相对熵 RENYI熵 passive-sensor data association cost function relative entropy Renyi entropy
作者简介 曹乐(1992-),女,山东聊城人,硕士研究生,主要研究工作信息融合。
  • 相关文献

参考文献15

  • 1Musicki D. Multi-target tracking using multiple passive bearings- only asynchronous sensors[ J]. IEEE Trans on Aerospace and E- lectronic Systems,2008,44(3) :1151 -1160.
  • 2Ouyang C, Ji H. Improved relaxation algorithm for passive sensor data association [ J ]. IET Radar, Sonar and Navigation, 2012, 6(4) :241 -250.
  • 3Zhang S, Bar-shalom Y. Efficient data association for 3 D passive sensors.. If I have hundreds of targets and ten sensors (or more)[ C]//Fusion 2011 14th International Conference on Information Fusion, Chicago, IL, United States,2011 : 1 -7.
  • 4鹿传国,冯新喜,孔云波,张迪.基于Kullback-Leibler散度的无源传感器数据关联[J].吉林大学学报(工学版),2013,43(6):1696-1701. 被引量:2
  • 5田野,姬红兵,欧阳成.基于距离加权最小二乘的量测数据关联[J].系统工程与电子技术,2011,33(11):2353-2358. 被引量:5
  • 6Lidgren A G, Gong K F. Properties of bearing-only motion analysis estimator:An interesting case study in system observability[ C ]// Proceedings of the 12th Asilomar Conference on Circuits Sys- tems, and Computer Monterey, CA, USA, 1978:50 -58.
  • 7Pattipati K R , Bar-shalom Y. A new relaxation algorithm and passive sensor data association [ J ]. IEEE Trans on AC, 1992, 37(2) :198 -213.
  • 8田野,姬红兵,欧阳成.基于角度余切值的多被动传感器数据关联[J].电子与信息学报,2010,32(10):2331-2335. 被引量:10
  • 9王燊燊,冯金富,李骞,王方年,张佳强.基于角度信息的近空间雷达网定位算法[J].空军工程大学学报(自然科学版),2012,13(1):33-36. 被引量:3
  • 10蒋文涛,孙利民,吕俊伟,杨曙辉.面向测向交叉定位的2级消元数据关联算法[J].华中科技大学学报(自然科学版),2012,40(3):63-67. 被引量:4

二级参考文献37

共引文献39

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部