期刊文献+

石墨烯光栅太赫兹透射特性的研究

Study on the terahertz transmission characteristics of graphene gratings using fast convergent Fourier model
在线阅读 下载PDF
导出
摘要 建立了石墨烯光栅模型,基于快速收敛傅里叶模型方法计算了太赫兹频段的石墨烯光栅透射率,讨论了费米能级、光栅周期、光栅占空比和弛豫时间对透射率的影响。研究结果表明,在正入射条件下,透射率随频率的增大先减小后增加,且费米能级、占空比和弛豫时间越高,透射率的最小值越小。在入射光频率为2 THz的条件下,透射率随入射角的增大先增加后减小,且透射率在入射角约为60°时取得最大值。以上研究为石墨烯光栅的理论研究及其实际应用提供了有力指导。 Based on the fast convergent Fourier model,the transmittance of the graphene gratings was calculated in terahertz waveband,the influences of Fermi energy,grating period,grating duty cycle and relaxation time of the graphene gratings on the transmittance were discussed under two conditions of normal incidence and fixed frequency. The results show that when the incident TM polarized plane wave is normal to the graphene gratings,the transmittance decreases to a minimum and then increases with the increase of frequency,and the minimum value of transmittance is smaller when the values of Fermi energy,grating duty cycle and relaxation time are bigger. The transmittance increases to a maximum and then decreases with the increase of incident angle when the incident frequency is fixed. Meanwhile,the transmittance gains the maximum value while the incident angle is about 60 degrees. The results of this study will provide significant guidance for the study of graphene gratings.
出处 《激光与红外》 CAS CSCD 北大核心 2015年第11期1369-1374,共6页 Laser & Infrared
基金 国家自然科学基金(No.61001018) 山东省自然科学基金(No.ZR2012FM011) 山东省高等学校科技计划项目(No.J11LG20) 青岛市创新领军人才项目(No.13-CX-25) 中国工程物理研究院太赫兹科学技术基金资助(No.201401) 青岛经济技术开发区重点科技计划项目(No.2013-1-64) 山东科技大学科技创新基金(No.YC140108)资助
关键词 石墨烯光栅 傅里叶模方法 太赫兹 透射特性 graphene gratings Fourier model method terahertz transmission characteristics
作者简介 李彤彤(1990-),女,在读硕士,从事太赫兹技术与器件的研究工作。E—mail:litongtong90@126.com
  • 相关文献

参考文献14

  • 1Geim A K, Novoselov K S. The rise of graphene [ J ]. Na- ture materials ,2007,6( 3 ) : 183 - 191.
  • 2Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum Hall effect in graphene [ J ]. Science, 2007,315 (5817) :1379.
  • 3Nomura K, MacDonald A H. Quantum Hall ferromagnet- ism in graphene [ J ]. Physical Review Letters, 2006,96 (25) :256602.
  • 4郝秋来,周立庆.石墨烯合成及其光电特性[J].激光与红外,2014,44(12):1295-1299. 被引量:4
  • 5宋浩青,杨爱英.石墨烯被动锁模光纤激光器的研究进展[J].激光与红外,2013,43(2):137-143. 被引量:9
  • 6Wu J, Zhou C, Yu J, et al. Design of infrared surface plas- mon resonance sensors based on graphene ribbon arrays [ J]. Optics & Laser Technology,2014,59:99 - 103.
  • 7G6mez-Dlaz J S, Esquius-Morote M, Perruisseau-Carrier J. Plane wave excitation-detection of non-resonant plas- mons along finite-width graphene strips [ J ]. Optics ex- press ,2013,21 (21) :24856 - 24872.
  • 8Balaban M V, Shapoval O V, Nosich A I. THz wave scat- tering by a graphene strip and a disk in the free space:in- tegral equation analysis and surface plasmon resonances[J]. Journal of Optics,2013,15( 11 ) :114007.
  • 9Chu H S, Gan C H. Active plasmonic switching at mid-in- frared wavelengths with graphene ribbon arrays [ J ]. Ap- plied Physics Letters,2013,102 (23) :231107.
  • 10Khavasi A. Fast convergent Fourier modal method for the analysis of periodic arrays of graphene ribbons [ J]. Optics letters,2013,38(16) :3009 - 3012.

二级参考文献47

  • 1舒强,舒永春,刘如彬,陈琳,姚江宏,许京军,王占国.半导体可饱和吸收镜实现超短高功率脉冲激光研究进展[J].激光与红外,2007,37(3):197-199. 被引量:8
  • 2Qiaoliang Bao, Han Zhang, Yu Wang, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers [ J ]. Advanced Functional Materials, 2009, 19 ( 19 ) : 3077 - 3083.
  • 3Han Zhang, Qiaoliang Bao, Dingyuan Tang, et al. Large energy soliton erbium-doped fiber laser with a graphene- polymer composite mode locker[ J ]. Applied Physics Let- ters,2009,95 (14) :141103.
  • 4Han Zhan, Dingyuan Tang, Knize R J, et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser [ J ]. Applied Physics Letters, 2010, 96 ( 11 ) : 111112.
  • 5Zhao L M, Tang D Y, Zhang H, et al. Atomic multi-layer graphene for dissipative soliton generation in ytterbium- doped fiber laser[ C ]. PGC ,2010, Singapore.
  • 6Zhang Han, Tang Dingyuan, Zhao Luming, et al. Vector dissipative solitons in graphene mode locked fiber lasers [ J ]. Optics Communications, 2010, 283 (17): 3334 - 3338.
  • 7Sun Zhipei, Hasan Tawfique, Torrisi Felice, et al. Gra- phene mode-locked uhrafast laser[ J]. ACS Nano,2010,4 (2) :803 -810.
  • 8Popa D, Sun Z, Torrisi F, et al. Sub 200 fs pulse genera-tion from a graphene mode-locked fiber laser[ J ]. Applied Physics Letters, 2010,97 (20) : 203106.
  • 9You Minchang, Hyungseok Kim, Lee Juhan, et al. Multi- layered graphene efficiently formed by mechanical exfoli- ation for nonlinear saturable absorbers in fiber mode- locked lasers[ J ]. Applied Physics Letters ,2010,97 (21) : 211102.
  • 10Song Yongwon, Jang Sungyeon, Han Wonsuk, et al. Gra- phene mode-lockers for fiber lasers functioned with eva- nescent field interaction [ J ]. Applied Physics Letters, 2010,96(5) :051122.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部