期刊文献+

次分数布朗运动相遇局部时的光滑性(英文)

Smoothness of the Collision Local Times of Sub-Fractional Brownian Motions
在线阅读 下载PDF
导出
摘要 令S^(H_i)={S_t^(H_i),t≥0},i=1,2是指标分别为H_i∈(0,1)的两个独立的d≥2维次分数布朗运动.本文利用混沌展开与初等的不等式给出了S^(H_1)与S^(H_2)的相遇局部时、相交局部时存在性,光滑性的充分必要条件. Let S^Hi={St^Hi,t≥0},i=1,2 be two independent, d-dimensional sub-fractional Brownian motions with respective indices Hi∈ (0, 1). Assume d ≥ 2. Our principal results are the necessary and sufficient condition for the existence and smoothness of the collision local time and the intersection local time of S^H1 and S^H2 through chaos expansion and elementary inequalities.
出处 《应用概率统计》 CSCD 北大核心 2015年第5期547-560,共14页 Chinese Journal of Applied Probability and Statistics
基金 supported by the National Natural Science Foundation of China(11271020)
关键词 次分数布朗运动 相遇局部时 相交局部时 混沌展开 Sub-fractional Brownian motion, collision local time, intersection local time, chaos expansion.
  • 相关文献

参考文献17

  • 1Berman, S.M., Self-intersections and local nondeterminism of Gaussian processes, The Annals of Probability, 19(1)(1991), 160-191.
  • 2Biagini, F., Hu, Y., Oksendal, B. and Zhang, T., Stochastic Calculus for Fractional Brownian Motion and Applications, Springer-Verlag, London, 2008.
  • 3Bojdecki, T., Gorostiza, L.G. and Talarczyk, A., Sub-fractional Brownian motion and its relation to occupation times, Statistics and Probability Letters, 69(4)(2004), 405-419.
  • 4Bojdecki, T., Gorostiza, L.G. and Talarczyk, A., Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems, Electronic Communications in Probability, 12(2007), 161-172.
  • 5Chen, C. and Yan, L., Remarks on the intersection local time of fractional Brownian motions, Statis- tics and Probability Letters, 81(8)(2011), 1003-1012.
  • 6Geman, D., Horowitz, J. and Rosen, J., A local time analysis of intersections of Brownian paths in the plane, The Annals of Probability, 12(1)(1984), 86-107.
  • 7Hu, Y., Self-intersection local time of fractional Brownian motions-via chaos expansion, Journal of Mathematics of Kyoto University, 41(2)(2001), 233-250.
  • 8Hu, Y. and Nualart, D., Renormalized self-intersection local time for fractional Brownian motion, The Annals of Probability, 33(3)(2005), 948-983.
  • 9Jiang, Y. and Wang, Y., On the collision local time of fractional Brownian motions, Chinese Annals of Mathematics, Series B, 28(3)(2007), 311-320.
  • 10Nualart, D., The Malliavin Calculus and Related Topics (Second Edition), Springer, New York, 2006.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部