期刊文献+

一种基于保角相位的图像边缘检测新方法 被引量:15

A New Approach for Image Edge Detection Based on Conformal Phase
在线阅读 下载PDF
导出
摘要 为了提高边缘检测精确度与抗噪性能,该文提出一种基于保角相位的图像边缘检测新方法。该方法首先利用保角单演信号能够表达不同本征维数的图像局部结构的特点,采用指数函数计算相位偏差,有效地抑制了相位一致模型边缘检测中产生的伪边缘和噪声,提高了边缘检测的精确度;其次,利用Poisson核在空域中有解析表示的优势,降低了算法复杂度。仿真实验结果表明,与现有的相位一致性图像边缘检测方法相比,该方法提取的图像边缘更精确、更完整、更均匀,对噪声具有更好的鲁棒性,同时,计算复杂度较低。 To improve the image edge detection accuracy and anti-noise performance, a new approach for image edge detection based on conformal phase is proposed. Firstly, the proposed approach can effectively improve the precision of edge detection and restrain the false edge and noise by using respectively the conformal monogenic signal which could express local structure of the image with different intrinsic dimensions and an exponential function to calculate the phase deviation. Secondly, it can reduce the complexity of the algorithm by taking advantage of the Poisson kernel of existence of analytic representation in spatial domain. To demonstrate the advantages, the proposed approach is compared with the existing methods of phase congruency based edge detection. The simulation experiment results show that the proposed approach can extract image edge more accurately, more completely, and more uniformly, with better robustness to noise and lower computational complexity.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第11期2594-2600,共7页 Journal of Electronics & Information Technology
基金 国家科技支撑计划基金(2014BAF07B01) 中国纺织工业联合会科技项目(2014066)~~
关键词 图像处理 边缘检测 相位一致性 保角单演信号 本征维数 Image processing Edge detection Phase congruency Conformal monogenic signal Intrinsic dimensionality
作者简介 石美红:女,1956年生,教授,研究方向为智能信息处理、模式识别等.通信作者:石美红meihong_shi@163.com 李青:男,1989年生,硕士生,研究方向为图像处理与模式识别. 赵雪青:女,1985年生,博士,讲师,研究方向为图像处理.
  • 相关文献

参考文献19

  • 1Molina C, Baets B, and Bustince H. A framework for edge detection based on relief functions[J]. Information Sciences, 2014, 278(10): 127 140.
  • 2Ray K. Unsupervised edge detection and noise detection from single image[J]. Pattern Recognition, 2013, 46(8): 2067-2077.
  • 3Hao Fei, Shi Jin-fei, Zhang Zhi-sheng, et al.. Canny edge detection enhancement by general auto-regression model and bi-dimensional maxinmm conditional entropy[J]. Optik, 2014, 125(15): 3946-3953.
  • 4Xu Qian, Varadarajan S, Chakrabarti C, et al.. A distributed canny edge detector: algorithm and FPGA implementation[J] IEEE Transactions on Image Processing, 2014, 23(7): 2944-2960.
  • 5Morrone M, Ross J, Burr D, et al.. Mach bands are phase dependent[J]. Nature, 1986, 324(6094): 250-253.
  • 6Morrone M and Owens R. Feature detection from local energy[J].Pattern Recognition Letters, 1987, 6(5): 303-313.
  • 7Kovesi P. Image features from phase congruency[J]. Videre: Journal of Computer Vision Research, 1999, 1(3): 1 26.
  • 8Liu De-lei, Xu Yong, Quan Yu-hui, et al.. Reduced reference image quality assessment using regularity of phase congruency[J]. Signal Processing: Image Communication, 2014, 29(8): 844-855.
  • 9Shojaeilangari S, Yau W, and Teoh E. A novel phase congruency based descriptor for dynamic facial expression analysis[J]. Pattern Recognition Letters, 2014, 49(11): 55-61.
  • 10李明,李德仁,范登科,郭炳轩.利用PC-SIFT的多源光学卫星影像自动配准方法[J].武汉大学学报(信息科学版),2015,40(1):64-70. 被引量:9

二级参考文献18

  • 1Venkatesh S, Owens R. An energy feature detection scheme[A]. In, the International Conference On Image Processing[C],Singapore, 1989 :553-557.
  • 2Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Mechine Intelligence,1986,8(6) 1679-998.
  • 3Morrone M C, Owens R A. Feature detection flora local energy[J], Pattern Recognition Letters, 1987,6(5):303-313.
  • 4Morrone M C, Navangione A, Burr D. An addaptive approach to scale selection for line and edge detection [J]. Pattern Recognition Letters, 1995,16(7):667-677.
  • 5Pollen D A, Ronaer S F. Visual cortical neurons as localized spatial frequency filters[J]. IEEE Transaction on System Men Cybern, 1983.13(5):907-916.
  • 6粱泰基.统计无城电理论[M].长沙:国防科技大学出版社,..
  • 7Abdou I E.Pratt W K.Quantitative design and evaluation of cnhancement/thresholding dege detectors[J].proceedings IEEE.1979,67(5):753~763.
  • 8Kitchen L,Rosenfeld A.Edge evaluation using local edge coherence[J].IEEE Transactions on System Man and Cybernetics,1981.11(9):597~605.
  • 9Lowe D G. Distinctive Image Features from Scale- Invariant Key Points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 10Bay H, Tuytelaars T, van Luc G. SURF: Speeded up Robust Features [J]. Computer Vision and Im- age Understanding, 2008, 110(3): 346-359.

共引文献14

同被引文献139

引证文献15

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部