期刊文献+

河网中具有时空关系的异常事件在线检测

Online abnormal event detection with spatio-temporal relationship in river networks
在线阅读 下载PDF
导出
摘要 当网络异常事件发生时,传感器节点间的时空相关性往往非常明显。而现有方法通常将时间和空间数据性质分开考虑,提出一种分散的基于概率图模型的时空异常事件检测算法。该算法首先利用连通支配集算法(CDS)选择部分传感器节点监测,避免监测所有的传感器节点;然后通过马尔可夫链(MC)预测时间异常事件;最后用贝叶斯网络(BN)推测空间异常事件是否出现,结合时空事件来预测异常事件是否会发生。与简单阈值算法和基于贝叶斯网络算法对比,实验结果表明该算法有高检测精度、低延迟率,能大幅降低通信开销,提高响应速度。 When the network abnormal event occurs, the spatial-temporal correlation of the sensor nodes is very obvious. While existing methods generally separate time and space data properties, a decentralized algorithm of spatial-temporal abnormal detection based on Probabilistic Graphical Model (PGM) was proposed. Firstly the Connected Dominating Set (CDS) algorithm was used to select part of the sensor nodes to avoid monitoring all the sensor nodes, and then Markov Chain (MC) was used to predict time exception event, at last Bayesian Network (BN) was utilized in modelling the spatial dependency of sensors, combining spatio-temporal events to predict whether the abnormal events would or would not occur. Compared with the simple threshold algorithm and BN algorithm, the experimental results demonstrate that the proposed algorithm has higher detection precision, and low delay rate, greatly reducing the communication overhead and improving the response speed.
出处 《计算机应用》 CSCD 北大核心 2015年第11期3106-3111,3207,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(61272543) 国家科技支撑计划项目(2013BAB06B04) 中央高校基本科研业务费专项资金资助项目(2015B22214) 中国华能集团公司总部科技项目(HNKJ13-H17-04) 云南省科技计划项目(2014GA007)
关键词 异常事件检测 马尔可夫链 贝叶斯网络 时空事件 连通支配集 abnormal event detection Markov chain Bayesian Network (BN) spatial-temporal event Connected Dominating Set (CDS)
作者简介 毛莺池(1976-),女,上海人,副教授,博士,CCF会员,主要研究方向:分布式计算、并行处理、分布式数据管理;电子邮箱yingchimao@hhu.edu.cn 接青(1989-),女,山东烟台人,硕士研究生,主要研究方向:分布式计算、并行处理、数据管理; 陈豪(1982-),男,上海人,高级工程师,博士研究生,主要研究方向:水工结构安全监测。
  • 相关文献

参考文献11

  • 1ELIADES D G, LAMBROU T P, PANAYIOTOU C G, et al. Contamination event detection in water distribution systems using a model-based approach[J]. Procedia Engineering, 2014, 89: 1089-1096.
  • 2KOLLER D, FRIEDMAN N. Probabilistic graphical models: principles and techniques[M]. Cambridge: MIT Press, 2009:72-75.
  • 3KARLIN S. A first course in stochastic processes[M].New York: Academic Press, 2014:16-22.
  • 4YIM S J, CHOI Y H. Fault-tolerant event detection using two thresholds in wireless sensor networks[C]// Proceedings of the 15th IEEE Pacific Rim International Symposium on Dependable Computing. Piscataway: IEEE,2009: 331-335.
  • 5XUE W, LUO Q, WU H. Pattern-based event detection in sensor networks[J]. Distributed and Parallel Databases, 2012, 30(1): 27-62.
  • 6PIAO D, MENON P G, MENGSHOEL O J. Computing probabilistic optical flow using Markov random fields[C]// Proceedings of the 4th International Conference on Computational Modeling of Objects Presented in Images, LNCS 8641. Berlin: Springer, 2014: 241-247.
  • 7WANG X R, LIZIER J T, OBST O, et al. Spatiotemporal anomaly detection in gas monitoring sensor networks[C]// Proceedings of the 5th European Conference on Wireless Sensor Networks. Berlin: Springer-Verlag, 2008: 90-105.
  • 8HUANG T, MA X, JI X, et al. Online detecting spreading events with the spatio-temporal relationship in water distribution networks[M]// Proceedings of the 9th International Conference on Advanced Data Mining and Applications. Berlin: Springer, 2013: 145-156.
  • 9DAI F, WU J. An extended localized algorithm for connected dominating set formation in Ad Hoc wireless networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2004, 15(10): 908-920.
  • 10ROSSMAN L A. EPANET 2 Users manual[J]. Laboratory Office of Research and United States Environmental Protection Agency, 2000, 19(1):115-118.

二级参考文献28

  • 1姚守拙 谭胜连 等.金膜压电石英晶体液振传感元件-电解富集法测定废水中微量汞[J].分析实验室,1988,7(4):1-1.
  • 2World Health Organization.Guidelines for drinking-water quality(3rd ed)[DB/OL].[2011—05—01].http:∥www.who.int/water_sanitation_health/dwq/gdwq3rev/en/.
  • 3EU Council.Council directive 98/83/EC on the quality of water in-tented for human consumption[DB/OL].[2011—05—01] http:∥www.lenntech.com/applications/drinking/standards/eu-s-drin-king-water-standards.htm.
  • 4US EPA.National primary drinking water regulations[DB/OL].[2011—05—01].http:∥water.epa.gov/drink/contaminants/in-dex.cfm.
  • 5Chen D Y,Chan P K.An intelligent ISFET sensory system withtemperature and drift compensation for long-term monitoring[J].IEEE Sensors Journal,2008,8(12):1948-1959.
  • 6Barnard A H,Barnard A H,Rhoades B,et al.Real-time and long-term monitoring of phosphate using the in-situ cycle sensor[R].Oceans 2009,MTS/IEEE Biloxi-marine technology for our future:Global and local challenges,Biloxi,2009.
  • 7Zhuiykov S.Development of ceramic electrochemical sensor basedon Bi2 Ru2 O7+x RuO2 sub-micron oxide sensing electrode forwater quality monitoring[J].Ceramics International,2010,136:2407-2413.
  • 8Zhuiykov S,Kats E,Marney D,et al.Improved antifouling resis-tance of electrochemical water quality sensors based on Cu2O-doped RuO2 sensing electrode[J].Progress in Organic Coatings,2011,70:67-73.
  • 9Zhuiykov S,Marney D,Kats E,et al.Potentiometric solid-state sensorfor DO measurement in water using sub-micron Cu0.4 Ru3.4 O7+RuO2 sensing electrode[J].Sensors and Actuators B,2011,153:312-320.
  • 10Jung W,Jang A,Bishop P,et al.A polymer lab chip sensor withmicrofabricated planar silver electrode for continuous and on-siteheavy metal measurement[J].Sensors and Actuators B,2011,155:145-153.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部