期刊文献+

基于模式识别理论的卡钻类型判别分析 被引量:2

Discriminant Analysis on Sticking Based on Pattern Recognition Theory
在线阅读 下载PDF
导出
摘要 将模式识别理论中的支持向量机、Bayes判别分析以及多元回归分析应用于卡钻类型判别分析,建立了基于模式识别理论的卡钻判别模型。以近几年川东北卡钻数据为例进行了算例分析,结果表明:采用支持向量机、Bayes判别法及多元回归法对卡钻类型判别的结果与实际结果的误判率分别为1.92%,11.52%,61.54%。支持向量机(SVM)判别结果精度最高,但其判别方程式较为复杂,不能直观看出各分量对结果的影响程度;多元回归分析判别方程形式简单,可以直观表达各参量与卡钻之间的密切程度,但其判别精度较低;Bayes判别法计算精度介于二者之间,但其判别精度与判别式的个数密切相关。 The Support Vector Machine( SVM),Bayes discriminant analysis and multiple regression analysis were used for diagnosis and prediction of sticking. The discriminant model of stick type was built based on pattern recognition theory. The calculation analysis on the sticking data of northeastern Sichuan was made,it was indicated that the misjudgment rate for discriminant result of SVM,Bayes discriminant analysis and multiple regression analysis was 1. 92%,11. 52% and 61. 54%. The accuracy of SVM recognition result was the highest,but its discriminant equation is complex and the contribution of each component to the result could not be intuitively seen; while the equation of multiple regression analysis is simple,which could intuitively show the close degree between each component and sticking,but the accuracy of recognition result was lower. The accuracy of Bayes discriminant analysis was between the above two,but the discriminant accuracy is closely related to the number of discriminant.
出处 《探矿工程(岩土钻掘工程)》 2015年第10期31-34,共4页 Exploration Engineering:Rock & Soil Drilling and Tunneling
基金 中石化科技攻关项目"页岩气‘井工厂’技术研究"(编号:P13138)
关键词 模式识别 支持向量机 Bayes判别法 多元回归 卡钻 pattern recognition Support Vector Machine Bayes discriminate method multiple regression sticking
作者简介 吴军,男,汉族,1981年生,石油工程专业,主要从事涪陵页岩气钻井技术管理及成本分析方面的研究与管理工作,重庆市涪陵区焦石镇涪陵页岩气公司钻井工程项目部,zangyb.sripe@sinopec.com。
  • 相关文献

参考文献9

二级参考文献43

共引文献115

同被引文献24

  • 1刘之的,夏宏泉,陈平,汤小燕,洪余刚.基于灰色GM(0,N)法的测井预测岩石可钻性研究[J].天然气工业,2004,24(11):76-78. 被引量:6
  • 2张建群,孙学增,赵俊平.定向井中摩擦阻力模式及其应用的初步研究[J].大庆石油学院学报,1989,13(4):23-28. 被引量:30
  • 3秦永和,付胜利,高德利.大位移井摩阻扭矩力学分析新模型[J].天然气工业,2006,26(11):77-79. 被引量:53
  • 4Samui J, Lansivaara T, Kim D. Utilization relevance vector machine for slope reliability analysis [ J ]. Applied Soft Computing, 2011,11 (5) :4036 -4040.
  • 5Samui P. Slope stability analysis: a support vector machine approach [ J ]. Environmental Geology,2008,56 : 255 - 267.
  • 6Tipping M E. Sparse Bayesian leaning and relevance vector machine[ J]. Journal of Machine Learning Research,2001 , ( 1 ) : 211 - 244.
  • 7Wang X D, Ye M Y, Duanmu C J. Classification of data from electronic nose using relevance vector machines [ J ]. Sensors and Actuators B : Chemical,2009,140( 1 ) : 143 - 148.
  • 8Xu C, Dai F C, Xu X W, Lee Y H. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China [ J ]. Geomorphology, 2012,145 - 146:70 - 80.
  • 9Kennedy J, Eberthart RC. Particle swarm optimization [ C ]. In: Proceedings of the IEEE international conference on neural networks, Perth, Australia, 1995, pp 1942- 1948.
  • 10马海,王延江,魏茂安,胡睿.地层可钻性级值预测新方法[J].石油学报,2008,29(5):761-765. 被引量:12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部