期刊文献+

融合K-Means与Agnes的Mashup服务聚类方法 被引量:8

MSCA: Mashup Service Clustering Approach Integrating K-Means and Agnes Algorithms
在线阅读 下载PDF
导出
摘要 如何从海量的Mashup服务集中快速、准确的找到满足用户需求的Mashup服务,成为一个具有挑战性的问题.在M ashup服务发现中,预先对M ashup服务进行聚类,将大大缩小服务搜索的空间与范围,提高M ashup服务发现的效率与精度.本文提出一种新颖的融合K-Means与Agnes的Mashup服务聚类方法(MSCA).该方法,首先对Mashup服务中的Tag标签进行扩充和排序;其次,计算Mashup服务的集成相似性;接着,应用K-Means算法对Mashup服务相似度矩阵进行聚类,找到相似度较高的Mashup服务将其划分到N个原子簇中,再利用Agnes算法对N个原子簇进行层次聚类.最后,从Programmable Web上爬取了13082个Mashup服务作为实验对象,实验结果表明:相比传统的基于K-Means算法的Mashup服务聚类方法,MSCA方法的平均查准率和查全率分别提高了5.18%、5.84%,切实提高了服务聚类及发现的精度. Howto rapidly and accurately select the users’ expected Mashup service has become a challenge problem. For Mashup service discovery,it will greatly reduce the space and scope of services searching to perform service clustering technology in advance,resulting in improving the efficiency and precision of Mashup service discovery. This paper proposes a novel Mashup Service Clustering Approach integrating K-Means and Agnes algorithms( MSCA). MSCA,first of all,will expand and rank the tag label of Mashup service. Secondly,it will calculate the Mashup service integration similarity. Thirdly,K-Means algorithm will be applied to clustering the Mashup service similarity matrix,and those Mashup services with the higher similarity will be found and divided them to N atom-clusters,and then Agnes algorithm will be used to performing hierarchical clustering to the N atom-clusters. Finally,13082 Mashup services are crawled from Programmable Web site and regarded as experimental dataset,and the experimental results showthat the average precision rate and recall rate of MSCA increased by 5. 18% and 5. 84% respectively,compared to the traditional Mashup Service Clustering Approach based on K-Means algorithm.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第11期2492-2497,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61402168 61402167 61272063)资助 软件工程国家重点实验室开放基金项目(SKLSE2014-10-10)资助
关键词 K-MEANS Agens Mashup服务 服务聚类 服务发现 K-Means Agens Mashup services service clustering service discovery
作者简介 黄兴,男,1988年生,硕士研究生,CCF会员,研究方向为服务计算;E-mail:jay1988528@163.com 刘小青,男,1962年生,博士,教授,博士生导师,研究方向为软件协同设计、服务计算等; 曹步清,男,1979年生,博士,副教授,研究方向为软件工程、服务计算与云计算; 唐明董,男,1978年生,博士,副教授,研究方向为网络科学,服务计算与云计算; 刘建勋,男,1970年生,博士,教授,博士生导师,研究方向为服务计算与云计算、工作流管理的理论与应用、大数据与商业智能等
  • 相关文献

参考文献3

二级参考文献62

  • 1吴健,吴朝晖,李莹,邓水光.基于本体论和词汇语义相似度的Web服务发现[J].计算机学报,2005,28(4):595-602. 被引量:218
  • 2邝砾,邓水光,李莹,吴健,吴朝晖.使用倒排索引优化面向组合的语义服务发现[J].软件学报,2007,18(8):1911-1921. 被引量:24
  • 3Hotho A, Staab S, Stumme G. Wordnet improves text docu- ment clustering. In Proc. SIGIR 2003 Semantic Web Work- shop, Toronto, Canada, Aug. 1, 2003.
  • 4Hu J, Fang L, Cao Y, Zeng H J, Li H, Yang Q, Chen Z. En- hancing text clustering by leveraging Wikipedia semantics. In Proc. SIGIR 2008, Singapore, Jul. 20-24, 2008, pp.179-186.
  • 5Heymann P, Koutrika G, Garcia-Molina H. Can social book- marking improve web search? In Proc. WSDM2008, PaloAlto, USA, Feb. 11-12, 2008, pp.195-206.
  • 6Ramage D, Heymann P, Manning C D, Garcia-Molina H. Clustering the tagged web. In Proc. WSDM2009, Barcelona, Spain, Feb. 9-12, 2009, pp.54-63.
  • 7http: / /www.dai-labor.de/en/ competence_centers/ irml/ data- sets/, April 2010.
  • 8Li X, Guo L, Zhao Y E. Tag-based social interest discovery. In Proc. WWW2008, Beijing, China, Apr. 21-25, 2008, pp.675- 684.
  • 9Wetzker R, Zimmermann C, Bauckhage C. Analyzing so- cial bookmaxking systems: A del.icio.us cookbook. In Proc. ECAI 2008 Mining Social Data Workshop, Patras, Greece, Jul. 21-25, 2008, pp.26-30.
  • 10Griffiths T L, Steyvers M. Finding scientific topics. In Proc. National Academy of Sciences, 2004, 101(Suppl.1): 5228- 5235.

共引文献76

同被引文献72

引证文献8

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部