期刊文献+

隐马尔科夫模型检测LDoS攻击方法的研究 被引量:6

The Research of Detecting Low-Rate Do S Attacks Based on Hidden Markov Model
在线阅读 下载PDF
导出
摘要 针对低速率拒绝服务LDo S(Low-Rate Denial of Service)攻击具有平均速率低、隐蔽性强的特点,提出了一种基于隐马尔科夫模型的LDo S攻击检测方法。首先对网络状态建立隐马尔科夫模型,将归一化累计功率谱密度NCPSD(Normalized Cumulative Power Spectrum Density)方法的检测结果作为隐马尔科夫模型的观测值。利用前向算法得到不同观测值序列在该模型下的相似度作为检测依据。在NS-2中对本检测方法进行测试,实验结果表明本方法能够有效的检测LDo S攻击,与其他方法相比也具有更好的检测性能。通过假设检验得出检测率为99.96%。 An HMM-based( Hidden Markov Model) approach is proposed to detect LDo S attacks which have the characteristics of low average rate and strong concealment. The HMM of network state is established,and then the detection results of NCPSD( Normalized Cumulative Power Spectrum Density) approach are treated as the observe values of HMM. The similarity of observation sequence is obtained by forward algorithm,and is applied as the measurement for detecting LDo S attacks. Test results of NS-2 simulation experiments indicate that the proposed detection approach can detect LDo S attacks effectively,and outperforms other detection approaches in terms of better detection performance. Finally,99. 96% detection probability is obtained by hypothesis testing.
出处 《信号处理》 CSCD 北大核心 2015年第11期1454-1460,共7页 Journal of Signal Processing
基金 国家自然科学基金(61170328) 中央高校基本科研基金(3122013D003)
关键词 低速率拒绝服务攻击 隐马尔科夫模型 假设检验 异常检测 low-rate denial of service hidden Markov model hypothesis testing anomaly detection
作者简介 岳猛 男,1984年生,河北沧州人,天津大学博士研究生,中国民航大学讲师,主要研究方向为信息安全、云计算、拒绝服务攻击的入侵检测。E—mail:myue@cauc.edu.cn 张才峰 男,1991年生,山东济南人。中国民航大学电子与通信工程专业硕士生,主要研究方向为拒绝服务攻击的入侵检测。E—mail:caifeng0531@163.com 吴志军 男,1965年生,新疆库尔勒人。中国民航大学教授,天津大学博导,主要研究方向为拒绝服务攻击、大数据信息安全、云计算等。E—mail:zjwu@cauc.edu.cn
  • 相关文献

参考文献11

  • 1Yajuan 'Fang, Xiapu Luo, Qing Hui, et al. Modeling the Vulnerability of Feedback-Control Based Internet Services to l~ow-Rate DoS Attacks [ Jl. IEEE Transactions on In- h)rmation Forensics and Security, 2014, 9 ( 3 ) : 339-353.
  • 2Jingtang Luo, Xiaolong Yang, Jin Wang, et al. On a Mathematical Model for Low-Rate Shrew DDoS [ J ]. IEEE Transactions on Information Forensics and Security, 2014, 9(7) : 1069-1083.
  • 3何炎祥,刘陶,曹强,熊琦,韩奕.低速率拒绝服务攻击研究综述[J].计算机科学与探索,2008,2(1):1-19. 被引量:20
  • 4Yu Chen, Hwang K, Kwok Y K. Collaborative Defense A- gainst Periodic Shrew DDoS Attacks in Frequency Domain [ C]//ACM Transactions on Information and System Secu- rity, ACM : Los Angeles, Califi~rnia, USA, 2(105 : 2-27.
  • 5Yu Chen, Hwang K. Collaborative Detection and Filtering of Shrew DDoS Attacks Using Spectral Analysis [ J]. Jour- nal of Parallel and Distributed Computing, 2006, 66 (9) : 1137-1151.
  • 6吴志军,岳猛.基于卡尔曼滤波的LDDoS攻击检测方法[J].电子学报,2008,36(8):1590-1594. 被引量:15
  • 7Zhijun Wu, Jin Lei, Di Yao, et a~. Chaos-based Detec- tion of LDoS Attacks [ J ]. Jol, mal of System and Soft- ware, 2013, 86(1) : 211-221.
  • 8Zhijun Wu, l,iyuan Zhang, Meng Yue. Dw-Rate DoS At- tacks Detection Based on Network Muhifractal [ J ]. IEEE Transactions on Dependable and Secure Computing, [ On-line ]. Available: http://ieeexplore, ieee. org/stamp/stamp. jsp? tp = &arnumber = 7120917, Article first published on- line: 10 JUN 2015 DOI: 10. 1109/TDSC. 2015.2443807.
  • 9秦银雪,李海峰,马琳.阅读认知模式下的图案识别方法研究[J].信号处理,2013,29(11):1526-1532. 被引量:1
  • 10Jain R, Abouzakhar N S. Hidden Markov Model Based Anomaly Intrusion Detection [ C ] // International Confer- ence for Internet Technology and Secured Transactions, London, UK, 2012: 528-533.

二级参考文献46

  • 1张峰,秦志光,刘锦德.基于入侵事件预测的网络安全预警方法[J].计算机科学,2004,31(11):77-79. 被引量:12
  • 2王祖俪,程小平.入侵响应中基于事件相关性的攻击预测算法[J].计算机科学,2005,32(4):144-147. 被引量:10
  • 3Qin Xinzhou, Lee Wenke. Attack Plan Recognition and Prediction Using Causual Networks[C]//Proceedings of ACSAC'04. Beijing, China: [s. n.], 2004.
  • 4Rabiner L R. A Tutorial on Hidden Markov Models and Selected Application in Speech Recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257-285.
  • 5Ourston D, Matzner S, Stump W, et al. Application of Hidden Markov Models to Detecting Multi_stage Network Attacks[C]//Proceedings of the 36th Hawaii International Conference on System Sciences. Hawaii: [s. n.], 2003.
  • 6Yu Chen, Yu-Kwong Kwok, Kai Hwang. Collaborative Defense Against Periodic Shrew DDoS Attacks in Frequency Domain [ J ]. Journal of Parallel and Distributed Computing. 2006, 66 (9):1137- 1151.
  • 7M Delio.New breed of attack zombies lurk[R/OL].http://www.acm.org/technews/articles/2001-3/0514m.html.2001-5-1.
  • 8Kuzmanovic A, Knightly E. Low-rate TCP-targeted denial of service attacks [ A ]. Proc ACM SIGCOMM'03 [ C ]. USA: ACM Press 2003.75 - 86.
  • 9Cheng C -M,Kung H, Tan K -S Tan.Use of spectral analysis in defense against DoS attacks[ J ]. Proc IEEE GLOBECOM. 2002,3(75) :2143 - 2148.
  • 10Y-K Kwok, R Tripathi, Y Chen, K Hwang. HAWK: Halting Anomaly with Weighted ChoKing to Rescue Well-Behaved TCP Sessions from Shrew DoS Attacks [ J]. LNCS Computer Networks and Mobile Computing. 2005,3619(47) :423 - 432.

共引文献35

同被引文献57

引证文献6

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部