期刊文献+

功率型变分原理和功能型拟变分原理及其应用 被引量:2

Power Type Variational Principles and Work-Energy Type Quasi-Variational Principles and Their Applications
在线阅读 下载PDF
导出
摘要 自钱伟长建立了功率型变分原理以来,功率型变分原理和功能型变分原理在理论方面和应用方面有什么区别和联系,成为学术界关注的课题.应用变积方法,根据Jourdain原理和d’Alembert原理,建立了不可压缩黏性流体力学的功率型变分原理和功能型拟变分原理,推导了不可压缩黏性流体力学的功率型变分原理的驻值条件和功能型拟变分原理的拟驻值条件.研究了不可压缩黏性流体力学的功率型变分原理在有限元素法中的应用.研究表明,功率型变分原理与Jourdain原理相吻合,功能型变分原理与d’Alembert原理相吻合.功率型变分原理直接在状态空间中研究问题,不仅在建立变分原理的过程中可以省略在时域空间中的一些变换,而且给动力学问题有限元素法的数值建模带来方便. Since the power type variational principle was established by CHIEN Wei-zang, the differences and relations between the power type variational principles and the work-energy type quasi-variational pri_nciples in theory and practice have been a hot topic in the academic circle. According to the Jourdain principle and the d' Alembert principle, the power type varia- tional principles and the work-energy type quasi-variational principles were established for the incompressible viscous flow in liquid-filled systems with the variational integral operation method, so as to deduce their stationary condition and quasi-stationary condition, respectively. The applications of the power type variational principles and the work-energy type quasi-variational principles in the finite element method were studied. It shows that the work-energy type quasi- variational principles coincide with the d' Alembert principle and the power type variational principles do with the Jourdain principle. The power type variational principles directly work in the state space so that they not only omit some transforms in the time space during the building of the related variational principles, but also make it convenient to build numerical models for dynamic problems.
出处 《应用数学和力学》 CSCD 北大核心 2015年第11期1178-1190,共13页 Applied Mathematics and Mechanics
基金 国家自然科学基金(10272034)~~
关键词 不可压缩流体 Jourdain原理 d’Alembert原理 功率型变分原理 功能型拟变分原理 变积方法 incompressible viscous fluid Jourdain principle d' Alembert principle power type variational principle work-energy type quasi-variational principle variational integral operation
作者简介 冯晓九(1964-),男,吉林人,教授,博士,硕士生导师(E—mail:fengxiaojiu999@126.com) 梁立孚(1939-),男,河北人,教授,博士生导师(通讯作者.E-mail:lianglifu@hrbeu.edu.cn).
  • 相关文献

参考文献19

二级参考文献86

  • 1梁立孚,石志飞.粘性流体力学的变分原理及其广义变分原理[J].应用力学学报,1993,10(1):119-123. 被引量:17
  • 2刘高联.流体力学变分原理及有限元法研究的进展[J].上海力学,1989,10(3):73-80. 被引量:15
  • 3钱令希.余能原理[J].中国科学,1950,(1):449-449.
  • 4胡海昌.论弹性体力学与受范性体力学中的一般变分原理[J].物理学报,1954,10(3):259-289.
  • 5胡海昌.弹性力学变分原理及其应用[M].北京:科学出版社,1982.142.
  • 6刘高联.流体力学变分原理的建立与变换的系统性途径.内燃机学报,1989,7(4):325-332.
  • 7HE J H. Generalized variational principles for 1-D unsteady viscous flow[J]. International Journal of Turbo Jet Engines, 1998, 15(4): 253-258.
  • 8HE J H. Variational principle for two-dimensional incompressible inviseid flow[J]. Physics Letters A, 2007, 371(1-2): 39-40.
  • 9HE J H. Variational approach to (2+1)-dimensional dispersive long water equations[J]. Physics Letters A, 2005, 335(2-3): 182-184.
  • 10REISSNER E. On a variational theorem in elasticity[J]. Journal of Mathematics and Physics, 1950, 29 (2): 90-98.

共引文献96

同被引文献27

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部