期刊文献+

基于CEH∞ F的移动机器人SLAM算法研究 被引量:6

CEH∞F based SLAM algorithm for mobile robots
在线阅读 下载PDF
导出
摘要 针对移动机器人同时定位与地图创建(SLAM)面对噪声干扰时估计精度低、鲁棒性差的缺点,提出一种基于容积扩展H∞滤波(CEH∞F)的SLAM算法。首先,通过线性误差传播特性将容积变换嵌入到扩展H∞滤波框架中,利用得到的CEH∞F计算SLAM条件转移概率密度,避免雅克比矩阵的计算和线性化误差积累的同时增强了算法的鲁棒性;另外,在每次迭代中更新调节因子γ,将噪声干扰到估计误差最大能量增益控制在较小范围内,进一步增强算法鲁棒性。实验部分将所提算法与扩展卡尔曼滤波SLAM(EKF-SLAM)、无迹卡尔曼滤波SLAM(UKF-SLAM)、容积卡尔曼滤波SLAM(CKF-SLAM)在不同噪声环境下进行了对比。结果表明,CEH∞F-SLAM算法具有良好的稳定性与精度,是一种有效的SLAM算法。 Aiming at the shortcoming that mobile robot simultaneous localization and mapping( SLAM) algorithm has the problems of low estimation accuracy and low robustness when facing with noise disturbance,a cubature extended H∞filter based SLAM( CEH∞F-SLAM) algorithm is proposed. By using statistical linear error propagation method,the cubature transform technique can be embedded into the EH∞F framework,and the obtained estimator named CEH∞F is used to calculate SLAM posterior probability density,which avoids the calculation of Jacobian matrix and linearization error accumulation; meanwhile,the robustness of the algorithm is increased. Besides,the tuning factorγis updated at each iteration,thus the maximum energy gain from noise disturbance to estimated errors is restricted in a small range,so that the robustness of the algorithm is further improved when facing unknown noise disturbance. In experiment,the proposed algorithm is compared with EKF-SLAM,UKF-SLAM and CKF-SLAM algorithms in different noise environment. The results show that the CEH∞F-SLAM algorithm has better stability and accuracy,and is an effective SLAM algorithm.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第10期2304-2311,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61201112) 河北省自然科学基金(F2012203169) 河北省普通高等学校青年拔尖人才计划(BJ2014056)项目资助
关键词 SLAM 容积卡尔曼滤波 扩展H∞滤波 鲁棒性 simultaneous localization and mapping(SLAM) cubature Kalman filter(CKF) extended H∞filter(EH∞F) ro-bustness
作者简介 朱奇光(通讯作者),2002、2005、2011年于燕山大学分别获得学士、硕士和博士学位,现为燕山大学副教授,主要研究方向为智能机器人检测与控制。E·mail:zhu7880@ysu.edu.cn袁梅,2012年于燕山大学获得学士学位,现为燕山大学硕士研究生,主要研究方向为机器人同时定位与地图创建。E—mail:aiyueyueyan@yeah.net陈卫东,2001、2005年于燕山大学分别获得硕士和博士学位,现为燕山大学教授,主要研究方向为智能算法及应用。E-mail:46705277@qq.com
  • 相关文献

参考文献16

  • 1DURRANT-WHYTE H, BAILEY T. Simultaneous locali-zation and mapping: Part I [ J] . IEEE Robotics and Au-tomation Magazine, 2006, 13(2) : 99-108.
  • 2夏凌楠,张波,王营冠,魏建明.基于惯性传感器和视觉里程计的机器人定位[J].仪器仪表学报,2013,34(1):166-172. 被引量:67
  • 3MALLIOS A, RID AO P,RIBAS D,et al. EKF-SLAMfor AUV navigation under probabilistic sonar scan-matc-hing[ C]. IEEE/RSJ International Conference on Intelli-gent Robots and Systems, 2010: 4404-4411.
  • 4JULIER S J, UHLMANN J K. Unscented filtering andnonlinear estimation [ J ]. Proceedings of the IEEE,2004,92(3) : 401-422.
  • 5ARASARATNAM I,HAYKIN S. Cubature Kalmanfilters [ J ] . IEEE Transactions on Automatic Con-trol, 2009, 54(6) : 1254-1269.
  • 6王宏健,傅桂霞,李娟,李村.基于强跟踪CKF的无人水下航行器SLAM[J].仪器仪表学报,2013,34(11):2542-2550. 被引量:15
  • 7高伟,张亚,孙骞,关劲.基于迭代平方根CKF的SLAM算法[J].哈尔滨工业大学学报,2014,46(12):120-124. 被引量:6
  • 8刘晓光,胡静涛,王鹤.基于自适应H_∞滤波的组合导航方法研究[J].仪器仪表学报,2014,35(5):1013-1021. 被引量:27
  • 9YANG F W, WANG Z D,LAURIA S, et al. Mobile ro-bot localization using robust extended H* filtering [ C ].Proceedings of the Institution of Mechanical Engineers,Part I: Journal of Systems and Control Engineering,2009, 223(8) : 1067-1080.
  • 10PAKKI K,CHANDRA B, GU DW, et al. SLAM UsingEKF,EH00 and Mixed EH2/H00 Filter [ C ] . IEEE Inter-national Symposium on Intelligent Control, 2010 :818-823.

二级参考文献62

  • 1周建军,王秀,张睿,刘刚,马伟,冯青春.农机车载GPS和DR组合导航系统定位方法![J].农业机械学报,2012,43(S1):262-265. 被引量:13
  • 2高为广,封欣,朱大为.基于神经网络构造的GPS/INS自适应组合导航算法[J].大地测量与地球动力学,2007,27(2):64-67. 被引量:14
  • 3王松桂.矩阵不等式[M].北京:科学出版社.2006:33-36.
  • 4BAIRD W H. An introduction to inertial navigation [J]. American Journal of Physics, 2009,77 (844).
  • 5KONOLIGE K, AGRAWAL M, SOL J. Large-Scale Visual Odometry for Rough TerrainRobotics Research [M]. KANEKO M, NAKAMURA Y. Heidelberg, Berlin, Springer,2011 : 201-212.
  • 6BONIN-FONT F, ORTIZ A, OLIVER G. Visual navigation for mobile robots : A survey [J]. Journal of Intelligent & Robotic Systems ,2008,53 ( 3 ) : 263-296.
  • 7STRASDAT H, MONTIEL J M M, DAVISON A J. Visual SLAM: Why filter [ J ]. Image and Vision Computing, 2012,30(2) : 65-77.
  • 8NEWMAN P, CHANDRAN-RAMESH M, COLE D, et al. Describing, navigating and recognising urban spaces-building an end-to-end SLAM system robotics research [M]. KANEKO M, NAKAMURA Y. Heidelberg, Berlin, Springer, 2011: 237-253.
  • 9WILLIAMS B,CUMMINS M, NEIRA J, et al. A comparison of loop closing techniques in monocular SLAM [ J ]. Robotics and Autonomous Systems, 2009, 57 ( 12 ) : 1188-1197.
  • 10KUMAR S, PRAKASH J, KANAGASABAPATHY P. A critical evaluation and experimental verification of extended kalman filter, unscented kalman filter and Neural State Filter for state estimation of three phase induction motor [ J ]. Applied Soft Computing, 2011, 11 ( 3 ) : 3199 -3208.

共引文献109

同被引文献38

引证文献6

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部