摘要
The discovery of high temperature superconductivity in single-layer FeSe/SrTiO3 provides a new platform for ex- ploring superconductivity and pursuing higher Tc (superconducting transition temperature) through fabricating artificial heterostructures. In this paper, we review the recent progress in studying and tuning the interfacial superconductivity in single-layer FeSe, through the combined in-situ spectroscopic studies and atomic-scale engineering. By fabricating arti- ficial heterostructures, various interfacial factors were tuned, and the corresponding evolutions of electronic structure and superconducting gap behavior were investigated. These studies enrich the current understanding on the interfacial superconductivity, and provide clues for further enhancing Tc through interface engineering.
The discovery of high temperature superconductivity in single-layer FeSe/SrTiO3 provides a new platform for ex- ploring superconductivity and pursuing higher Tc (superconducting transition temperature) through fabricating artificial heterostructures. In this paper, we review the recent progress in studying and tuning the interfacial superconductivity in single-layer FeSe, through the combined in-situ spectroscopic studies and atomic-scale engineering. By fabricating arti- ficial heterostructures, various interfacial factors were tuned, and the corresponding evolutions of electronic structure and superconducting gap behavior were investigated. These studies enrich the current understanding on the interfacial superconductivity, and provide clues for further enhancing Tc through interface engineering.
基金
supported by the National Natural Science Foundation of China and the National Basic Research Program of China(Grant Nos.2012CB921402,2011CB921802,and 2011CBA00112)