期刊文献+

离心式压缩机转子振动信号的PCA降噪方法研究 被引量:3

RESEARCH ON THE PCA NOISE REDUCTION OF ROTOR VIBRATION SIGNAL IN CENTRIFUGAL COMPRESSOR
在线阅读 下载PDF
导出
摘要 针对实际生产现场的离心式压缩机转子振动信号伴随强噪声干扰,难以进行转子运行状态监测和评价的问题,提出基于Hankel矩阵的主分量分析(Principal component analysis,简称PCA)降噪方法。该方法在以转子振动信号建立Hankel矩阵的基础上,采用主分量分析进行噪声压缩与信号重构。仿真正弦信号和离心式压缩机转子振动信号的分析结果表明,该方法能够实现转子振动信号的高效降噪,得到的降噪结果具有清晰恢复真实信号的能力,有助于生产现场的实时应用,保障生产的顺利进行。 Aiming at the difficulties in monitoring and evaluating the running conditions of rotors with strong noise interference in the centrifugal compressor rotor vibration signal in the actual production field,this paper puts forward the Principal component analysis(PCA)noise reduction method based on the Hankel matrix.Principal component analysis is applied to suppress noise and reconstruct signals by establishing Hankel matrix with rotor vibration signal.The analysis results of simulation sine signal and the signal of the centrifugal compressor rotor vibration indicate that the method can reduce the noise in rotor vibration signals efficiently.And the noise reduction results has the ability to restore the real signal clearly,which helps to the real-time application in production field and ensures the smooth production operation.
作者 钱广华
出处 《石油化工设备技术》 CAS 2015年第3期40-43,7,共4页 Petrochemical Equipment Technology
关键词 主分量分析 HANKEL矩阵 离心式压缩机 转子 Principal component analysis(PCA) Hankel matrix Centrifugal compressor Rotor
作者简介 钱广华,1982年毕业于华东石油学院化工机械专业.工学学士,在化工部从事设备管理工作,已发表论文多篇,高级工程师。EmaU:qianguanghua.tjsh@sinopec.com。
  • 相关文献

参考文献6

二级参考文献40

  • 1高松竹,蒲家宁,左松涛.基于小波分析的离心式压缩机振动故障诊断研究[J].天然气与石油,2004,22(4):61-63. 被引量:3
  • 2张克南,陆扬,谢里阳,郑进文,万年红.基于SVD方法的弱故障特征提取方法[J].机床与液压,2006,34(10):214-216. 被引量:11
  • 3耿俊豹,黄树红,陈非,刘伟.基于信息熵贴近度的旋转机械故障诊断[J].华中科技大学学报(自然科学版),2006,34(11):93-95. 被引量:18
  • 4LI Jing, QU Liang-sheng. Feature extraction based on rootlet wavelet and its application for mechanical fault diagnosis[J]. Journal of Sound and Vibration, 2000, 234(1): 135-148.
  • 5SHAN Li-xiang, Tay F E H, QU Liang-sheng, et al. Fault diagnosis using rough sets theory[J]. Computers in Industry, 2000, 43(1): 61-72.
  • 6Pawlak Z. Rough sets: Theoretical aspects of reasoning about data[M]. Amsterdam: Kluwer Academic Publishers, 1991.
  • 7Slowiski R. Intelligent decision support: Handbook of application of rough sets theory[M]. Netherlands: Kluwer Academic Publishers, 1992.
  • 8Slowinski R, Stefanowski J. Rough-set reasoning about uncertain data[J], Fundamenta Informaticae, 1996, 27(2/3): 229-243.
  • 9Rebolledo M R. Integrating rough sets and situation-based qualitative models for processes monitoring considering vagueness and uncertainty[J]. Engineering Applications of Artificial Intelligence, 2005, 18 (5): 617-632.
  • 10Qing H W, Jing R L. A rough set-based fault ranking prototype system for fault diagnosis[J]. Engineering Applications of Artificial Intelligence, 2004, 17(8): 909-917.

共引文献48

同被引文献14

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部