期刊文献+

基于遗传-BP神经网络的航空发动机气路故障诊断研究(英文) 被引量:5

The research on aero-engine gas path fault diagnosis by genetic algorithm-BP neural network
在线阅读 下载PDF
导出
摘要 为提高BP神经网络诊断发动机气路故障的准确率,利用遗传算法对BP神经网络的初始连接权值和阀值在解空间内进化寻优,再将优化结果赋给网络以梯度下降算法进行二次训练,再对待检故障样本进行诊断。结果表明:GA-BP网络在输出精度、收敛速度及收敛曲线平滑性上明显优于普通BP网络,为航空发动机故障诊断领域的研究提出了新的思路和方法,具有一定研究价值。 In order to improve the accuracy rate of aero-engine gas-path fault diagnosis based on BP neural network,this research uses the genetic algorithm to optimize the initial weights and thresholds of BP neural network in their solution space,retrains the results by gradient descent algorithm and uses the optimized network to testify the fault samples. The result shows that GA-BP network has a higher precision and converges faster,and its convergence curve is smoother than that of the common BP network. This work can put forward new ideas and methods for aero-engine fault diagnosis and has a certain research value.
出处 《机床与液压》 北大核心 2015年第18期31-36,共6页 Machine Tool & Hydraulics
基金 supported by The 4th Boeing Technical Challenge Fund (201410059)
关键词 Aero-engne Gas PATH FAULT diagnosis GENETIC algorithm BP NEURAL network Aero-engine,Gas path fault diagnosis,Genetic algorithm,BP neural network
  • 相关文献

参考文献7

二级参考文献74

共引文献79

同被引文献55

引证文献5

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部