期刊文献+

基于改进S变换的手掌静脉身份识别 被引量:3

Palm vein identity recognition based on improved S-transform
原文传递
导出
摘要 针对目前基于手掌静脉的身份识别问题,分析了掌脉图像的纹理特性,提出一种利用改进的S变换能量特征的识别方法。首先对掌脉图像进行二维离散正交S变换(2D-DOST),将变换后的频域图像作为掌脉纹理特征的一种体现,即形成S变换能量曲面(STES);然后将不同掌脉能量曲面进行减法运算,得到能量差曲面,进一步计算曲面的标准差,并以此为依据对不同掌脉进行分类识别。在通用的接触式标准掌脉图库上测试的结果表明,本文方法正确识别率为99.892 5%,识别时间为0.017 3s;同时使用自主设计的采集仪在非接触环境下测试的结果表明,本文方法正确识别率可达99.480 6%,识别时间为0.020 2s。相比其他典型和流行算法,本文算法提高了手掌静脉识别系统的性能,具有可行性和有效性。 Aiming at the identification problem based on palm vein, the texture characteristics of the palm vein image are analyzed, and a recognition method using improved S-transform energy feature is pro- posed. Firstly, the 2D discrete orthonormal S-transform (2I)-DOST) is used for palm vein image, and the frequency domain image is obtained after the transform as a reflection of palm vein texture features, which is called S transform energy surface (STES), then the energy difference surface is got from the subtraction operation between the different palm vein energy surfaces. Furthermore, the standard devia- tion can be calculated from it,which will be a basis for the classification of different palm vein images. Experimental tests based on the common standard contact palm vein database show that the correct rec- ognition rate of this method is 99. 8925% ,and the recognition time is 0.017 3 s. At the same time,the actual effect tests are carried out using a self designed acquisition instrument in contactless environment. The results show that the correct recognition rate can reach 99. 480 6 %, and the recognition time is 0. 020 2 s. These demonstrate that the proposed method has certain advantages compared with other typical and popular algorithms, which is feasible and effective for improving the performance of palm vein recog- nition system.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第9期1776-1782,共7页 Journal of Optoelectronics·Laser
基金 辽宁省教育厅科学研究(L2014132)资助项目
关键词 手掌静脉身份识别 二维离散正交S变换(2D-DOST) 纹理特征 采集仪器 palm vein identity recognition two-dimensinal discrete orthonormal S-transform (2D- DOST) texture feature acquisition instrument
作者简介 林森(1980-),男,辽宁沈阳人,博士,讲师,主要从事机器视觉检测、模式识别等方面的研究.E-mail:lin_sen6@126.com
  • 相关文献

参考文献20

  • 1石博雅,孟卓,刘铁根,王龙志.全光纤光学相干层析系统用于人造指纹的识别[J].光电子.激光,2013,24(12):2404-2408. 被引量:8
  • 2冷璐,刘刚,黎明.可撤销手掌纹脉二维PalmHash码的共轭认证[J].光电子.激光,2014,25(9):1791-1795. 被引量:3
  • 3Kang W X,Liu Y,Wu X Q,et al.Contact-free palm-vein recognitio n based on local invariant features[J].PloS One,2014,9(5):97548.
  • 4Wu W.Palm vein recognition based on independent component analy sis[J].Applied Mechanics and Materials, 2013,333-335:1106-1109.
  • 5Al-juboori A M,Wu X Q,Zhao Q S.Biometric authentication system based on palm vein[A].Proc.of International Conference on Computer Sciences and Applications[C].2013,2-58.
  • 6Wu W.A study of two dimensional fisher linear discriminant for palm vein recognition[J].Advanced Materials Research,2013,760-762:1410-1413.
  • 7苑玮琦,王楠.基于局部灰度极小值的掌脉图像分割方法[J].光电子.激光,2011,22(7):1091-1096. 被引量:18
  • 8Wu K S,Lee J C,Lo T M,et al.A secure palm vein recognition syst em [J].Journal of Systems and Software, 2013,86(11):2870-2876.
  • 9Ladoux P O,Rosenberger C,Dorizzi B.Palm vein verification syste m based on SIFT matching[A].Proc.of 3rd International Conference on Advances in Biometrics[C].2009,0-1298.
  • 10Wu W,Lin S,Song H.A Contactless palm vein recogn ition system based on principle line SIFT[J].Applied Mechanics and Materials,2013,347-350:3469-3472.

二级参考文献84

  • 1苑玮琦,刘真,柯丽.基于双树复数小波变换的掌纹特征提取[J].光电子.激光,2009,20(4):534-539. 被引量:1
  • 2腾轶超,丁海曙,龚庆成,贾在申,黄岚,王培勇.近红外光谱监测体外循环手术中脑组织氧合状况的研究[J].光谱学与光谱分析,2006,26(5):828-832. 被引量:20
  • 3苑玮琦,徐露,林忠华.基于灰度曲面匹配的虹膜识别方法[J].光学学报,2006,26(10):1537-1542. 被引量:18
  • 4Wang Lingyu, Graham Leedham. Near-and far-infrared imaging for vein pattern biometrics[C]. IEEE International Conference on Video and Signal Based Surveillance, 2006. 52-57.
  • 5Masaki Watanabe. Palm Vein Authentication in Advances in Biometrics[M]. Heidelberg, Germany: Springer-Verlag, 2008. 75-88.
  • 6David Zhang, Guo Zhenhua, Guangming Lu et al.. Online joint palmprint and palmvein verification[J]. Expert Syst. Appl., 2011, 38(3): 2621-2631.
  • 7Lin Chih-Lung, Fan Kuo-Chin. Biometric verification using thermal images of palm-dorsa vein patterns[J]. IEEE T. Circ. Syst. Vid., 2004, 14(2): 199-213.
  • 8Eui Chul Lee, Kang Ryoung Park. Image restoration of skin scattering and optical blurring for finger vein recognition[J]. Opt. Laser. Eng., 2011, 49(7): 816-828.
  • 9张大鹏, 卢光明, 郭振华. 基于手掌静脉与掌纹的近红外成像设备与身份识别方法[P]. 中国专利, 2008. 200710144916.
  • 10Li Qiang, Zeng Yan′an, Peng Xiaojun et al.. Curvelet-based palm vein biometric recognition[J]. Chin. Opt. Lett., 2010, 8(6): 577-579.

共引文献58

同被引文献39

  • 1Roy K, shelton J. Multibiometric system using fuzzy leve set,and genetic and evolutionary feature extraction [J] ET Biometrics, 2015,4(3) : 151-161.
  • 2Jain A, Nandakumar K, Ross A. Score normalization in multimodal b iometric systems [J]. Pattern Recognition, 2005,38(12):2270-2285.
  • 3Nandakumar K, Chen Y, Dass S C, Jain A K. Likelihood ratio-based biometric score fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30 (2) :342-347.
  • 4Hu Roland, Damper R I. Optimal weighting of bimodal bio- metric information with specific application to audio-visua person identification[J]. Information Fusion, 2009,10 ( 2 ) 172-182.
  • 5Kumar A, Kanhangad V,Zhang D. A new framework for a- daptive multimodal biometrics management [Jl. IEEE Transactions on Information Forensics and Security, 2010,5(1) :92-102.
  • 6Romain Giot,Christophe Rosenberger. Genetic program- ming for multibiometrics[J]. Expert Systems with Appli-cations,2012,39:1837-1847.
  • 7Yogendra Narain Singha, Sanjay Kumar Singhb, Phalgun Gupta. Fusion of electrocardiogram with unobtrusive bio- metrics:An efficient individual authentication system[J] Pattern Recognition Letters, 2012,33: 1932-194].
  • 8Di Wu, Jie Cao. Multimodel biometrics fusion based on FAR and FRR using Triangular Norm r-J]. Internationa Journal of Computational Intelligence Systems, 2015, 8 (4) :779-786.
  • 9LIANG Yi-cong, DING Xiao-qing, LIU Chang-song, et al. Combining multiple biometric traits with an order preser- ving score level fusion algorithm [J]. Neurocomputing, 2016,(171) :252-261.
  • 10Ladyzynski Pawei, Grzegorzewski Przemyslaw. Vague preferences in recommender systems[J]. Expert Systems with Applications,20]5,42(24) :9402-9411.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部