期刊文献+

四极子DNA修饰金纳米棒的制备及其用于荧光光谱法测定铅(Ⅱ)

Preparation of Gold Nanorods Modified by G-Quadruplex DNA and Its Application to Fluorospectrophotometric Determination of Pb(Ⅱ)
在线阅读 下载PDF
导出
摘要 采用四极子(G4)DNA修饰的金纳米棒通过荧光对铅(Ⅱ)进行检测。由于铅(Ⅱ)对四极子DNA结构具有极高的稳定效率,能够驱使四极子DNA形成四极子结构与荧光探针锌原卟啉(ZnPPIX)螯合。金纳米棒不仅作为DNA的载体,而且金纳米棒的荧光增强效应还可以提高ZnPPIX-G4的荧光强度,从而构建了一个灵敏的铅(Ⅱ)荧光传感器。以透射电子显微镜、荧光光谱法及紫外吸收光谱法等表征该四极子DNA-金纳米棒复合材料。该荧光传感器的线性范围为100nmol·L^-1以内和150~1 000nmol·L^-1之间,检出限(3S/N)为0.1nmol·L^-1。采用该检测器对自来水样品进行分析,测定结果与电感耦合等离子体原子发射光谱法的测定结果相符。 Gold nanorods modified by G-quadruplex was used for the fluorescence determination of Pb(Ⅱ).Pb(Ⅱ)can drive the formation of G-quadruplex DNA which can chelate with the fluorescent probes zinc protoporphyrin because Pb(Ⅱ)can stabilize the G-quadruplex DNA structure with high efficiency.The gold nanorods not only are a DNA carrier,but also enhance the fluorescence intensity of ZnPPIX-G4.Based on the fact,a new Pb(Ⅱ)sensitive fluorescent sensor was constructed. The G-quadruplex DNA-gold nanorods were characterized by transmission electron microscopy,fluorescence spectroscopy and UV absorption spectroscopy.The linearity range of the Pb(Ⅱ)found were within 100nmol·L^-1 and 150-1 000nmol·L^-1,with detection limit(3S/N)of 0.1nmol·L^-1.The sensor was used to analyze tap water samples,giving results in agreement with that obtained by ICP-AES.
作者 甘浩 邓留
出处 《理化检验(化学分册)》 CAS CSCD 北大核心 2015年第9期1269-1273,共5页 Physical Testing and Chemical Analysis(Part B:Chemical Analysis)
基金 国家自然科学基金资助项目(21175156 20975114 20775093) 中国博士后基金资助项目(2011M500126 2012T50656)
关键词 金纳米棒 铅(Ⅱ) 荧光光谱法 四极子 Gold nanorods Pb( Ⅱ ) Fluorospectrophotometric G-quadruplex
作者简介 作者简介:甘浩(1988-),男,湖南长沙人,硕士研究生,主要研究方向为纳米材料在生物传感器上的应用。
  • 相关文献

参考文献15

二级参考文献55

  • 1张新,邹苗章.能量色散X射线荧光光谱法测定聚合物中的镉、铅、汞、铬、溴[J].现代测量与实验室管理,2007,15(5):17-19. 被引量:8
  • 2简虎,吴松坪,姚高尚,熊腊森.能量色散X射线荧光光谱分析及其应用[J].电子质量,2006(1):13-15. 被引量:23
  • 3Yu C X, Nakshatri H, Irudayaraj J. Identity profiling of cell surface markers by multiplex gold nanorod probes. Nano Lett, 2007, 7(8): 2300-2306.
  • 4Salem A K, Searson P C, Leong K W. Multifunctional nanorods for gene delivery. Nature Materials, 2003, 2(10): 668-671.
  • 5Chen S H, Fan Z Y, Carroll D L. Silver nanodisks: synthesis, characterization and self-assembly. J Phys Chem B, 2002, 106(42): 10777- 10781.
  • 6Chang J Y , Wu H M, Chen H, et al. Oriented assembly of au nanorods using biorecognition system. Chem Commun, 2005 (8): 1092 - 1094.
  • 7Vial S, Pastoriza-Santos I, Prez-Juste J, et al. Plasmon coupling in layer-by-layer assembled gold nanorod films. Langmuir, 2007, 23 (8): 4606-4611.
  • 8Kawamura G, Yang Y, Nogami M. End-to-end assembly of CTAB- stabilized gold nanorods by citrate anions. J Phys Chem C, 2008, 112(29): 10632- 10636.
  • 9Darbha G K, Rai U S, Singh A K, et al. Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-rayleigh scattering spectroscopy. Chemistry, 2008, 14(13): 3896-3903.
  • 10Sudeep P K, Shibu J S T, George T K. Selective detection of cysteine and glutathione using gold nanorods. J Am Chem Soc, 2005, 127(18): 6516-6517.

共引文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部