期刊文献+

四极磁场下大尺寸直拉硅单晶生长三维数值模拟 被引量:2

Three-dimensional numerical simulation of large diameter Czochralski silicon growth in a quad-pole magnetic field
在线阅读 下载PDF
导出
摘要 在大尺寸直拉硅单晶生长过程中,针对水平磁场单方向磁力线分布引起的熔体温度分布非轴对称特征,提出了一种双磁力线结构的磁场——四极磁场。为准确描述非轴对称磁场作用下晶体生长过程,采用三维数值模拟方法,建立了四极磁场下二维/三维混合热场模型的边界条件,并将三维数值模拟结果与水平磁场作以对比。结果表明,四极磁场降低了熔体内部温度的非轴对称性;增加磁感应强度有利于增加熔体自由表面附近温度分布的均匀性,但对固液界面形状调节作用不明显;强磁场环境下,提高晶体旋转速度有利于改变固液界面凹凸程度,改善固液界面形态的非轴对称性。 In large diameter Czochralski silicon crystal growth process, for the non axial symmetric features in melt temperature caused by the unidirectional magnetic flux distribution, a magnetic field with dual flux line structure is proposed the quad-pole magnetic field. A three dimensional numerical simulation method is used to describe the growth process of the crystal growth process under the non axial symmetric magnetic field. The boundary conditions of 2D/3D hybrid hot zone model with quad-pole magnetic field are established and the 3D numerical results are compared with the bi-pole horizontal magnetic field hot zone. The results shows that in quad-pole magnetic fieht, the non-axial symmetry of the internal temperature of the melt is reduced; Increasing the magnetic flux density helps to improve the temperature distribution uniformity near the free surface of the melt, but improvements on the shape of solid-liquid interface is not obvious ; Under strong magnetic flux density, a higher crystal rotation rate will helps improve the deflection of the solid-liquid interface, and improve the non-axial symmetry of the solid-liquid interface shape.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2015年第9期238-243,共6页 Transactions of Materials and Heat Treatment
基金 国家重点基础研究发展计划(2014CB360508) 博士点基金优先发展领域(20136118130001)
关键词 直拉硅单晶 非轴对称性 四极磁场 数值模拟 Czochralski silicon non-axial symmetry quad-pole magnetic field numerical simulation
作者简介 张晶(1986-),女,博士,从事直拉硅单晶多场耦合建模、热系统设计与控制参数研究,发表论文4篇,E-mail:zj18467@163.com. 通讯作者:刘丁(1957-),男,教授,从事晶体生长核心工艺参数优化与控制系统研究,发表论文篇150余篇,电话:029-82312088,E—mail:liud@xaut.edu.cn。
  • 相关文献

参考文献8

  • 1周潘兵,柯航,周浪.热处理和冷却速率对直拉单晶硅少子寿命的影响[J].材料热处理学报,2012,33(8):23-27. 被引量:3
  • 2Xianrong C,Li Y S, Jiemin Z. Three dimensional simulation of melt flow in Czochralski crystal growth with steady magnetic fields [ J]. Journal of Crystal Growth ,2012,340 ( 1 ) : 135 - 141.
  • 3REN Binyan, ZHAO Long, FU Hongbo, et al. Effects of a heat shield on pull speed and oxygen concentration in a qb200 mm Cz Si[ J ]. Chinese Journal of Semiconductors, 2005,26 ( 9 ) : 21 - 24.
  • 4LIU Li-jun,Koichi K. 3D global analysis of CZ-Si growth in a transverse magnetic field with rotating crucible and crystal [J].Journal of Crystal Growth,2005,40(4) :347 -351.
  • 5Koichi K, LIU Li-jun. Partly three-dimensional calculation of silicon Czochralski growth with transverse magnetic field [ J ]. Journal of Crystal Growth, 2007,303(7) :135 - 140.
  • 6LIU Li-jun, Satoshi N, Koiehi K. An analysis of temperature distribution near the melt-crystal interface in silicon Czochralski growth with a transverse magnetic field[ J]. Journal of Crystal Growth ,2005,282 (10) :49 - 59.
  • 7Yoan C Oliver M, Nathalie V B, et al. Effective simulation of the effect of a transverse magnetic field (TMF) in Czochralski Silicon growth [ J]. Journal of Crystal Growth,2012,360( 1 ) : 18 - 24.
  • 8姜雷,刘丁,赵跃,焦尚彬.水平磁场作用下Φ300mm直拉单晶硅生长三维数值模拟[J].材料热处理学报,2013,34(7):193-198. 被引量:4

二级参考文献18

  • 1花聚团,杨德仁,席珍强,倪利红,阙端麟.快速热处理法制备单晶硅太阳能电池[J].材料热处理学报,2006,27(6):10-13. 被引量:2
  • 2阙端麟,陈修治.硅材料科学与技术[M].杭州:浙江大学出版社,2001.
  • 3周浪.Thermal engineering of crystalline silicon and solar cell processes[ R].道达尔中国论坛一先进太阳电池技术,苏州,2010.
  • 4Buonassisi T, Andrei A I, Matthew A M,et al. Engineering metal-impurity nanodefects for low-cost solar cells[ J ]. Nature Materials,2005, 4 (9) : 676 - 679.
  • 5Buonassisi T, Istratov A, Marcus M, et al. Synchrotron-based investigations into metallic impurity distribution and defect engineering in muhicrystalline silicon via thermal treatments [ C ]//Proc. 31 st IEEE PVSC, Lake Buena Vista, Florida, 2005:1027 -1030.
  • 6Rohatgi A, Rai-Choudhury P. Defect and carrier lifetime in silicon [ A ]. Gupta D C. Silicon processing[ C ]//American Society for Testing and Materials, 1983:389 - 404.
  • 7Semilab WT2000PV User Manual [ Z ]. 2008:8.
  • 8Wtlnstel K, Wagner P. Interstitial iron and iron-acceptor pairs in silicon[ J]. Applied Physics A, 1882, 27:207 -212.
  • 9Istratov A A, Hieslmair H, Weber E R. Iron and its complexes in silicon [ J]. Applied Physics A, 1999,69 (1) : 13 -44.
  • 10lstratov A A, Hieslmair H, Weber E R. Iron contamination in silicon technology[ J]. Applied Physics A, 2000, 70(5) : 489 -534.

共引文献5

同被引文献18

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部