期刊文献+

曲面边界样点逆向均值漂移识别 被引量:5

Reverse mean shift detection algorithm for boundary points of surface
在线阅读 下载PDF
导出
摘要 针对现有的曲面边界样点识别算法难以适应非均匀分布的实物表面采样数据的问题,将目标样点的k-近邻点集作为曲面局部样本,基于均值漂移算法使得曲面局部样本在一定程度上向目标样点邻近的采样数据稀疏区域扩展,实现对曲面局部样本的增益优化,并对增益优化后的曲面局部样本进行核密度估计,获取目标样点对应的模式点,并通过比较目标样点与其对应模式点的偏离程度进行边界样点判定。实验表明,该算法可快速准确地识别曲面裁剪边界、几何连续的相邻面片公共边界以及曲率变化较大的过渡曲面上的特征样点,并且对非均匀分布的采样数据具有良好的适应性。 For solving the problem that current surface boundary points detection algorithms were difficult to adapt non-uniform distributed sampled data of physical surface, a boundary detection algorithm based on reverse mean shift was proposed. Based on mean shift algorithm, the surface local sample which used by k-nearest neighbors of objective point was extended to the sampled data sparse region of adjacent objective point, and the gain optimization for the surface local sample was realized. The kernel density estimation was applied for gain optimized sample to ob- tain the corresponding mode point of objective point. The boundary points were detected by comparing the deviation extent between the objective point and its mode point. The experimental results showed that the proposed algorithm could detect the characteristic points of surface trim boundary, public boundary of geometric continuous adjacent surfaces and transitional curved surface with great curvature change, and had good adaptability for the sample data of non-uniform distribution.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2015年第7期1719-1724,共6页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(51075247)~~
关键词 实物表面采样数据 曲面边界样点识别 均值漂移 核密度估计 动态空间索引 sampled data of physical surface surface boundary point detection mean-shift kernel density estimation dynamic spatial index
作者简介 李延瑞(1979-),男,山东郯城人,博士研究生,研究方向:三维测量数据处理、曲面重建等,E-mail:liyanrui.m2@gmail.com; 孙殿柱(1956-),男,山东烟台人,教授,博士生导师,研究方向:数字化设计与制造,通信作者,E-mail:dianzhus@sdut.edu.cn; 张英杰(1962-),男,陕西西安人,教授,博士生导师,研究方向:数字化设计与制造; 白银来(1988-),男,河南南阳人,硕士研究生,研究方向:三维测量数据处理、曲面重建等。
  • 相关文献

参考文献17

  • 1IJM S P, HARON H. Surface reconstruction techniques:a re- view[J]. Artificial Intelligence Review,2014,42(1):59-78.
  • 2HUANG H, WU S, GONG M, et al. Edge-aware point set resampling[J]. ACM Transactions on Graphics, 2013,32 (1) : No. 9.
  • 3SHI Baoquan, LIANG Jin, LIIA Qing. Adaptive simplification of point cloud using k-means clustering[J]. Computer-Aided Design, 2011,43(8) .910-922.
  • 4BENHABILES H, AUBRETON O, BARKI H, et al. Fast simplification with sharp feature preserving for 3D point clouds [C]//Proceedings of the 2013 11th International Symposium on Programming and Systems (ISPS). Washington, D. C. , USA. IEEE, 2013 : 47-52.
  • 5孙殿柱,范志先,李延瑞.散乱数据点云边界特征自动提取算法[J].华中科技大学学报(自然科学版),2008,36(8):82-84. 被引量:52
  • 6陈义仁,王一宾,彭张节,江健生.一种改进的散乱点云边界特征点提取算法[J].计算机工程与应用,2012,48(23):177-180. 被引量:40
  • 7孙殿柱,刘华东,史阳,李延瑞.基于核密度估计的散乱点云边界特征提取[J].农业机械学报,2013,44(12):275-279. 被引量:14
  • 8COMANICIU D, MEER P. Mean shift: A robust approach to- ward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(5) : 603-619.
  • 9ZENG M, ZHAO F, ZHENG J, et al. Octree-based fusion for realtime 3D reconstruction[J]. Graphical Models, 2013, 75 (3) : 126-136.
  • 10MERRY B, GAIN J, MARAIS P. Accelerating kd-tree sear- ches for all k-nearest neighbours[EB/OL]. [2014-01-20]. http://people, es. uct. ac. za/jgain/publications/kdtree, pdf.

二级参考文献51

共引文献102

同被引文献30

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部