期刊文献+

解析解混沌雷达系统的多目标测距 被引量:1

Multi-target Distance Measurement of Analytical Solution Chaotic Radar System
在线阅读 下载PDF
导出
摘要 针对传统混沌雷达对多目标测距困难的问题,提出了一种建立在解析解系统上的混沌雷达多目标测距方法。该方法使用解析解混沌系统中的连续信号作为雷达发射信号,并把解析解混沌系统中的二值离散序列经移位寄存器保存在雷达接收端,通过保存的二值离散序列能够准确重构雷达发射信号模板。使用该模板和回波信号进行匹配滤波,通过匹配滤波输出信号的峰值得到待测目标的距离。该方法能够在-10 d B信噪比条件下实现多目标测距,且雷达接收端因为只需保存二值离散信号所以需要的存储空间小,实现过程成本低廉。仿真实验验证了提出方法的有效性。 For the problem of multi-target distance measurement of traditional chaotic radar system,a multi-tar-get distance measurement method based on analytical solution system is proposed. In the method,the continuous signal of the analytical solution chaotic system is designed as the radar transmit signal. The binary discrete se-quence of the analytical solution chaotic system is saved in the radar receiver by the shift register. The transmit signal copy can be reconstructed accurately by the saved binary discrete sequence in the radar receiver. The matched filter is then realized by the copy and the receiving signal. Target distance is obtained through the peak of the output of the matched filter. Multi-target distance measurement can be realized under -10 dB signal-to-noise ratio ( SNR) by the proposed method. Moreover,the storage is easily realizable and the cost is cheap since the radar receiver only needs to save the binary discrete signal which requires small space to store infor-mation. Finally,numerical simulations show the effectiveness of the proposed method.
出处 《电讯技术》 北大核心 2015年第9期947-952,共6页 Telecommunication Engineering
基金 国家自然科学基金青年科学基金资助项目(61401045) 中国博士后科学基金项目(2014M560736) 陕西省自然科学基金青年科学基金资助项目(2015JQ6239) 中央高校基本业务费基金资助项目(CHD2014G1241045)~~
关键词 解析解系统 混沌雷达 混沌信号处理 多目标雷达测距 二值离散序列 analytical solution system chaotic radar system chaotic signal processing multi-target radar distance measurement binary discrete sequence
作者简介 刘立东(1982-),男,河南新乡人,分别于2005年和2008年获西南交通大学自动化专业学士学位、控制理论与控制工程专业硕士学位,2012年于电子科技大学获信号与信息处理专业博士学位,现为博士后、讲师,主要研究方向为混沌信号处理和雷达信号处理。 宋焕生(1964-),男,1996年于西安交通大学获博士学位,现为长安大学信息工程学院教授,主要研究方向为非线性信号处理、数字图像处理和智能交通等.
  • 相关文献

参考文献18

  • 1Carroll T L. Chaotic system for self - synchronizingdoppler measurement[J]. Chaos,2005,15(1):013109(1)-013109(5).
  • 2Naraynanan M,Muhammad D. Doppler Estimation Usinga Coherent Ultrawide-Band Random Noise Radar[J].IEEE Transactions on Antennas Propagation, 2000, 48(6):868-878.
  • 3Venkatasubramanian V,Leung H. A novel chaos-basedhigh-resolution imaging technique and its application tothrough-the-wall imaging[J]. IEEE Signal ProcessingLetters,2005,12(6):528-531.
  • 4Kulpa K,Lukin K,Miceli W,et al. Signal Processing inNoise Radar Technology[J]. IET Radar,Sonar and Navi-gation,2008,2(4):229-232.
  • 5Carroll T. Chaotic systems that are robust to added noise[J]. Chaos,2005,15(1):1-7.
  • 6Shi Z G,Qiao S,Chen K S. Ambiguity functions of directchaotic radar employing microwave chaotic Colpitts oscil-lator[J]. Progress In Electromagnetics Research,2007,77:1-14.
  • 7Alonge F,Branciforte M,Motta F. A novel method of dis-tance measurement based on pulse position modulationand synchronization of chaotic signals using ultrasonic ra-dar systems [J]. IEEE Transactions on Instrument andMeasurement,2009,58(2):318-329.
  • 8Liu L D,Hu J F,He Z S. Chaotic signal reconstruction withapplication to noise radar system[J]. EURASIP Journal onAdvances in Signal Processing,2011,1(2):1-8.
  • 9Liu L D,Hu J F,He Z S. A Robust Controller for Synchroni-zation of Chaotic System[J]. Journal of Optoelectronics andAdvanced Materials,2011,13(4):354-358.
  • 10Liu L D,Hu J F,He Z S. A Velocity MeasurementMethod Based on Scaling Parameter Estimation of Cha-otic System[J]. Metrology and Measurement System,2011,18(2):275-282.

二级参考文献14

  • 1刘嘉兴.飞行器测控与信息传输技术[M].北京:国防工业出版社,2011.
  • 2Pecora L M, Carroll T L. Synchronization in chaotic systems [J]. Physical Review Letters, 1990,64(8) :821 - 824.
  • 3Parlitz U, Ergezinger S. Robust commtmication based on chaotic spreading sequences[J]. Physics Letters A, 1994,188 (2) : 146 - 150.
  • 4Stavroulakis P. Chaos applications in tel [M]. Boca Raton:CRC Press, 2006.
  • 5Wei H D, LI L P. An Efficient Method for Detecting Chaot- ic Spread Spectrum Sequences [ C ]//Proceedings of 2010. Second International Conference on Computer Modeling and Simulation. Sanya: IEEE, 2010: 244 - 248.
  • 6Kantz H, Sehreiber T. Nonlinear time series analysis[ M]. 2nd ed. London: Cambridge University Press,2004.
  • 7Pikovsky A, Rosenblum M, Kurths J. Synchronization: a u- niversal concept in nonlinear sciences[M]. London: Cam- bridge University Press, 2001.
  • 8Parlitz U. Estimating Model Parameters from Time Series by Autosynehronization[ J]. Physical Review Letters, 1996,76 (8) : 1232 - 1235.
  • 9Yu D, Wu A. Comment on "Estimating Model Parameters from Time Series by Autosynchronization" [J]. Physical Re- view Letters, 2005, 94(21): 219401.
  • 10刘嘉兴,文吉.Ka频段混沌扩频测控系统的设想[J].电讯技术,2009,49(5):33-37. 被引量:12

共引文献3

同被引文献1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部