期刊文献+

关于非负矩阵Hadamard幂的Hadamard积

About Hadamard products of Hadamard powers of nonnegative matrices
在线阅读 下载PDF
导出
摘要 对于一般的非负矩阵A,B∈Mn,0<α<1,ρ[αA+(1-α)B]可能大于,等于,或者小于αρ(A)+(1-α)ρ(B),因此,谱半径不是非负矩阵上的凸函数.文中给出谱半径的对数在非负矩阵Hadamard幂的Hadamard积上是凸函数,且给出有关非负不可约矩阵Hadamard幂的Hadamard积的一些等价条件. For general nonnegative A,B∈Mnand 0α1,ρ[αA+(1-α)B]may be larger than,equal to,or smaller thanαρ(A)+(1-α)ρ(B),so the spectral radius is not a convex function of its nonnegative matrix argument.Firstly,it is found that the Logarithm of the spectral radius is a convex function fromRk+to Ron Hadamard products of Hadamard powers of nonnegative matrices.Secondly,some sufficient and necessary conditions about Hadamard products of Hadamard powers of irreducible nonnegative matrices are given.
出处 《纺织高校基础科学学报》 CAS 2015年第1期1-3,共3页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(11171201) 陕西省自然科学基金资助项目(2011JM1007)
关键词 非负矩阵 HADAMARD积 Hadamard幂 M-矩阵 PERRON向量 nonnegative matrices Hadamard products Hadamard powers M-matrices Perron vector
作者简介 通讯作者:任芳国(1969-),男,陕西省乾县人,陕西师范大学副教授,博士,研究方向为算子论.E-mail:rfangguo@snnu.edu.cn
  • 相关文献

参考文献11

  • 1FIEDLER M, MARKHAM T L. An inequality for the Hadamard product of an M-matrix and inverse M-matrix[J]. Linear Algebra and its Applications, 1998,101: 1-8.
  • 2HUANG R. Some inequalities for the Hadamard product and Fan product of matriees[J]. Linear Algebra and its Appli- cations, 2008,428 (7) :1551-1559.
  • 3高荣丽,任芳国.矩阵的Hadamard积和Fan积的特征值的界[J].纺织高校基础科学学报,2009,22(4):426-429. 被引量:2
  • 4CHEN S. A lower bound for the minimum eigenvalue of the Hadamard product of matrices[J]. Linear Algebra and its Applications, 2004,378 : 159-166.
  • 5任林源,楼琅.关于Kronecker积和Hadamard积的一些矩阵不等式[J].宝鸡文理学院学报(自然科学版),2003,23(4):257-258. 被引量:1
  • 6ZHANG F Z. Matrix theory basic results and techniques[M]. Berlin:Springer, 2011:325-372.
  • 7HORN R A,JOHNSON C R. Topics in matrix analysis[M]. Cambridge: Cambridge University Press, 1991:304-380.
  • 8任芳国.非负矩阵数值域的几何性质[J].纺织高校基础科学学报,2003,16(2):102-104. 被引量:6
  • 9HORN R A,JOHNSONC R. Matrix analysis[M]. Cambridge: Cambridge UniVersity Press, 1990 : 490-528.
  • 10BERMAN A, PLEMMONS R J. Nonnegative matrices in the mathematical scienees[M]. Londom Academic Press, 1979,132-161.

二级参考文献14

  • 1HORN R A,JOHNSON C R. Matrix analysis[ M]. Cambridge:Cambridge Univ Press, 1985.
  • 2HORN R A, JOHNSON C R. Topic in matrix analysis [ M ]. Cambridge:Cambridge Univ Press, 1991.
  • 3BERMAN A, PLEMMONS R J. Nonnegative matrices in the mathematical sciences [ M ]. Philadelphia: SIAM, 1994.
  • 4FANG M Z. Bounds for eigenvalues of the Hadamard product and Fan product of matrices [ J]. Linear Algebra and Its Applications ,2007,425:7-15.
  • 5HORN R A,JOHNSON C R. Topic in matrix analysis[M]. Cambridge:Cambridge Univ Press, 1991.
  • 6GLETAFSON K E, RAO D K NL Numerical range[ M]. New York: Springer- Verlag New York Inc, 1997.
  • 7LI C H, TAM B S, WU P Y. The numerical range of a nonnegetive matrix[J]. Linear Algebra Appl, 2002,350:1-23.
  • 8FILDER M. Numerical range of mamces and levinger' s theorem[J]. Linear Algebra and Its Application, 1995,220 :171-180.
  • 9TAM B S. On mamces with cyclic structure[J]. Linear Algebra Appl, 1999,302-303:377-410.
  • 10TAM B S. Circularity of numerical ranges and block shift matrices[J]. Linear and Multilinear Algebra, 1994,37:93-109.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部