摘要
为寻求水质污染时河流扩散参数的计算方法,以确定河流横向扩散系数的直线图解法为基础,在模糊数的基础上分析河流水团示踪试验数据,建立正态模糊线性回归模型,通过模糊集的隶属函数计算不同置信水平下河流横向扩散系数和河流平均流速等河流水质参数的取值区间。实际算例验证结果表明,应用正态模糊线性回归模型确定的河流水质参数值与真值非常接近,说明该方法是可行的,并且是可靠、合理的。该方法能够反映河流系统自身的不确定性以及实际中存在的各种不确定因素对其的影响。
To explore the method of calculating river's diffusion coefficient in the presence of pollution,a normal fuzzy linear regression model was built,and through the membership function of fuzzy set,the ranges of water quality parameters( transversal diffusion coefficient and average flow velocity) in the presence of different confidence levels were calculated. The model was built based on linear graphic method,and the tracer test data of water mass was analysed based on fuzzy numbers. The water quality parameters calculated by this model were very close to the real values,which accounts for the feasibility and rationality of this model. It could also reflect the uncertainty of river system and the effects of other uncertainties in practice.
出处
《长江科学院院报》
CSCD
北大核心
2015年第8期22-25,39,共5页
Journal of Changjiang River Scientific Research Institute
基金
中央高校基本科研业务费专项资金资助项目(310829130225)
关键词
模糊线性回归
正态模糊数
隶属函数
横向扩散系数
平均流速
fuzzy linear regression
normal fuzzy number
membership function
transversal diffusion coefficient
average flow velocity
作者简介
张转(1988-),女,陕西咸阳人,硕士研究生,主要从事最优化理论与方法研究,(电话)15202974335(电子信箱)zhangzhuan10@163.com。通讯作者:常安定(1964-),男,陕西大荔人,教授,硕士生导师,主要从事水文地质的数学方法研究,(电话)13389213296(电子信箱)chdanding@126.com。