期刊文献+

The Convergence of Krylov Subspace Methods for Large Unsymmetric Linear Systems 被引量:6

The Convergence of Krylov Subspace Methods for Large Unsymmetric Linear Systems
原文传递
导出
摘要 The convergence problem of many Krylov subspace methods, e.g., FOM, GCR, GMRES and QMR, for solving large unsymmetric (non-Hermitian) linear systems is considered in a unified way when the coefficient matrix A is defective and its spectrum lies in the open right (left) half plane. Related theoretical error bounds are established and some intrinsic relationships between the convergence speed and the spectrum of A are exposed. It is shown that these methods are likely to converge slowly once one of the three cases occurs: A is defective, the distribution of its spectrum is not favorable, or the Jordan basis of A is ill conditioned. In the proof, some properties on the higher order derivatives of Chebyshev polynomials in an ellipse in the complex plane are derived, one of which corrects a result that has been used extensively in the literature. The convergence problem of many Krylov subspace methods, e.g., FOM, GCR, GMRES and QMR, for solving large unsymmetric (non-Hermitian) linear systems is considered in a unified way when the coefficient matrix A is defective and its spectrum lies in the open right (left) half plane. Related theoretical error bounds are established and some intrinsic relationships between the convergence speed and the spectrum of A are exposed. It is shown that these methods are likely to converge slowly once one of the three cases occurs: A is defective, the distribution of its spectrum is not favorable, or the Jordan basis of A is ill conditioned. In the proof, some properties on the higher order derivatives of Chebyshev polynomials in an ellipse in the complex plane are derived, one of which corrects a result that has been used extensively in the literature.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1998年第4期507-518,共12页 数学学报(英文版)
关键词 Unsymmetric linear systems CONVERGENCE Krylov subspace The Chebyshev polynomials DEFECTIVE DERIVATIVES Unsymmetric linear systems Convergence Krylov subspace The Chebyshev polynomials Defective Derivatives
  • 相关文献

同被引文献23

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部