期刊文献+

聚合物中空微球的制备及碱后处理因素的正交试验研究 被引量:10

Preparation of Hollow Polymer Particles and Orthogonal Experiment Design for Alkali Post-treatment Conditions
原文传递
导出
摘要 首先采用种子乳液聚合法合成高羧基含量的核壳聚合物微球,然后利用碱液进行后处理,经渗透溶胀后可形成具有中空结构的聚合物微球,考察了单体加料工艺和聚合配方对聚合稳定性及微球形貌的影响,通过正交试验设计研究了不同的碱后处理条件对溶胀后微球形貌的影响程度,并进行了极差和方差分析.结果表明,控制单体加料速度和引入中间极性过渡层,有利于核壳聚合物微球的制备;碱液用量为影响溶胀后聚合物微球形貌的主要因素,碱处理温度次之,碱处理时间的影响相对较弱.当碱酸摩尔比为1~1.15,碱处理温度为80~90℃,碱处理时间为1~5 h时,制得的聚合物微球具有良好的中空结构. Core-shell polymer latex particles containing carboxyl-groups inside were prepared via multistage seeded emulsion polymerization, and could evolved into hollow polymer particles after alkali post-treatment because of osmotic swelling. The effects of monomer feeding mode and polymerization recipes on the morphology of resultant particles were investigated. Orthogonal experiment design and range as well as variance analysis were utilized to figure out the influence degree on the morphology of alkali-treated particles from various alkali post-treatment conditions. Results showed that, controlling the feeding time of monomers and introducing polarity transition interlayer were beneficial to synthesizing particles with distinct core-shell structure. The alkali dosage had the most significant impact on the morphology of alkali-treated particles, followed by alkali post-treatment temperature, and the least effective for alkali post-treatment time. Moreover, polymer microspheres with stable and excellent hollow structure could be achieved with NaOH/MAA mole ratio range from 1 to 1. 15 ,alkali post-treatment temperature range from 80 to 90℃,and time range from 1 to 5 h.
出处 《高分子学报》 SCIE CAS CSCD 北大核心 2015年第8期927-932,共6页 Acta Polymerica Sinica
基金 黑龙江省青年自然科学基金(基金号QC2014C052)资助项目
关键词 中空微球 种子乳液聚合 渗透溶胀 极性过渡 正交试验 Hollow particles, Seeded emulsion polymerization, Osmotic swelling, Polarity transition, Orthogonal experiment
作者简介 通讯联系人,E-mail:weideng@hrbust.edu.cn; kancy@tsinghua.edu.cn
  • 相关文献

参考文献26

  • 1Wang L Y,Liu Y,Zhang W F,Chen X M,Yang T Y,Ma G H.Curr Pharm Des,2013,19(35):6340~6352.
  • 2Deng H J,Lei Z L.Composites Part B,2013,54:194~199.
  • 3Li G L,Yang X Y,Wang B,Wang J Y,Yang X L.Polymer,2008,49(16):3436~3443.
  • 4Sahu P K,Mahanwar P A,Bambole V A.Pigm Resin Technol,2013,42(4):223~230.
  • 5Mc Donald C J,Devon M J.Adv Colloid Interface Sci,2002,99(3):181~213.
  • 6Wang R,Cai X,Shen F L.Ceram Int,2013,39(8):9465~9470.
  • 7Wen De(文德),Zeng Hongmei(曾红梅),Wang Yanying(王妍媖),Lai Qiongyu(赖琼钰),Ji Xiaoyang(吉晓洋).无机材料导报,2008(1):29~32.
  • 8Basavaiah K,Prasad Muvva D,Rao A V Prasada.J Exp Nanosci,2014,9(5):491~500.
  • 9Zhang Weihong(张卫红),Huang Yi(黄怡),Tian Wei(田威).化学进展,2013,11(25):1951~1961.
  • 10Bodugoz H,Guven O.J Appl Polym Sci,2002,83(2):349~356.

二级参考文献28

  • 1李凯,杜中杰,张晨,励杭泉.中空酚醛微球的合成与表征[J].高分子材料科学与工程,2006,22(4):36-39. 被引量:4
  • 2张幼维,江明,赵炯心,汪佳烨.原位聚合法制备具有温敏PNIPAM壳的核-壳结构聚合物纳米微球的研究[J].高分子学报,2007,17(2):136-143. 被引量:6
  • 3David S. US patent,6617364.2003-09-09.
  • 4Gallego C N, Klett W J. Carbon, 2003, (41) : 1461 - 1466.
  • 5Bruneton E, Tallaron C, Gras-Naulin N, Cosculluela A. Carbon,2002, (40) : 1919 - 1927.
  • 6Ulibarri M A, Pavlovic I, Barriga C. Applied Clay Science, 2001, (18) : 17 - 27.
  • 7Vaccari A. Catalysis Today, 1998, (41) :53 - 71.
  • 8Nakayama H, Wada N, Tsuhako M. International J of Pharmaceutics, 2004, (2) :469 - 478.
  • 9Samuel Mt, Catherine M, Fr6deric S, Olivier R. Macromolecules, 2007, (40) : 2070 - 2078.
  • 10Liang C D,Dai S.J Am Chem Soc,2006, (16):5316- 5317.

共引文献34

同被引文献54

  • 1王韧.Ropaque优创遮盖聚合物[J].上海建材,2003(6):25-26. 被引量:2
  • 2杨忠兵,詹晓力,陈丰秋.酸碱渗透溶胀法制备微米/亚微米级中空聚合物微球[J].涂料工业,2007,37(6):69-72. 被引量:1
  • 3Okubo M,Konishi Y,Minami H. Production of hollow polymer particles by suspension polymerization[J]. Colloid and Polymer Science,1998,276(7) :638-642.
  • 4Hana Mackovfi, Daniel Hot,k, Eduard Petrovskr, et al. Magnet- ic hollowpoly ( N-isopropylacrylamide-co-N, Nr-methylenebi- sacrylamide-co-glycidyl acrylate) particles prepared by inverse emulsion polymerization[J]. Colloid and Polymer Science, 2013, 291(1) :205-213.
  • 5Wang Gang,Dou Hongjing, Sun Kang. Facile synthesis of hol- low polymeric microparticles possessing various morphologies via seeded polymerization [J]. Colloid and Polymer Science, 2012,290(18), 1867-1877.
  • 6Liu X,Jiang M,Yang S, et al. Micelles and hollow nanospheres based on E-caprolactone-containing polymers in aqueous media [J]. Angewandte Chemie,2002,114(16) :3074-3077.
  • 7Okubo M,Konishi Y, Inohara T. Production of hollow polymer particles by suspension polymerizations for divinylhenzene/toluene droplets dissolving styrene-methyl methacrylate copolymers [J]. Macromolecular Symposia, 2001,175 ( 1 ) .. 321-328.
  • 8Mcdonald C J,Devon M J. Hollow latex particles:synthesis and applications[J]. Advances in Colloid Interface Science, 2002, 99(3) : 181-213.
  • 9Kowalski A,Vogel M,Robert M. Sequential heteropolymer dis- persion and a particulate material obtainable therefrom, use-ful in coating compositions as a thickening and/or opacifying ar gent : US,4427836[P]. 1984-01-24.
  • 10Li Guoliang, Yang Xiaoying, Wang Bin, et al. Monodisperse temperature-responsive hollow polymer microspheres: synthe- sis, characterization and biological application [J]. Polymer, 2008,49 (16) : 3436-3443.

引证文献10

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部