期刊文献+

光激发半导体硅片对宽带太赫兹波的调制研究 被引量:4

Study of optical excitation modulation on broadband terahertz wave in bulk Si
原文传递
导出
摘要 利用光泵浦-太赫兹(THz)探测(OPTP)技术,研究了THz波在Si半导体界面间的传输行为。通过改变抽运光密度从而改变样品表面的载流子浓度,实现对THz波透射/反射的有效调制。在外加中心波长为800nm的飞秒激光激发块体半导体Si片时,成功实现了对宽带THz波时域谱包括入射THz脉冲振幅和相位以及THz波次级反射峰抗反射的调制。光激发Si片可以获得任意载流子浓度的Si片实现对THz脉冲振幅的调制,调制度达到90%以上;光激发Si片能够使THz脉冲的相位发生负延迟,随着泵浦光密度的增加,负的相移越来越明显,随着频率的增高,负的相移也越来越明显;光激发Si片还能够对THz波的次级反射峰进行调制,随着泵浦光密度的改变,实现对次级反射峰的π相位以及次级反射峰抗反射的调制。光激发Si片对宽带THz波时域谱的调制为THz波在通信、国防安全等领域的应用奠定了基础。 Using optical pump-terahertz(THz)probe(OPTP)technology and changing the carrier concentration of the sample,we achieve the effective modulation of the THz transimition/reflection when changing the pump fluence.With the pump beam at 800 nm,we achieve the effective modulation on THz time domain spectroscopy.The modulation of THz time domain spectroscopy includes the modulation of the ampiltude and phase of THz wave,and the modulation of secondary reflection peak of THz wave by changing the pump fluence.With varying the pump fluence,more than 90% modulation of the ampiltude of THz wave can be achieved.Another phenomenon we observed is that a negative time shift of the terahertz pulse occurs when the silicon surface is photoexcited.With pump fluence increases,and the frequency increases,negative phase shift is becoming more and more obvious.Varing the pump fluence,the secondary reflection peak shows aπphase shift or zero phase shift relative to that of incident pulse,and it acts as a broadband terahertz pulse antireflection coating with proper pump fluence.This modulation of THz time domain spectroscopy can lay the foundation for the application of THz wave in communication,national defense and security fields.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第7期1412-1416,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(11304186 61205081 61204105) 上海市自然科学基金(14ZR1417500) 上海高校青年教师培养资助基金 上海电力学院人才引进基金(K2014-028)资助项目
关键词 光泵浦-太赫兹(THz)探测(OPTP) 光密度 光生载流子 相位调制 抗反射 optical pump-terahertz probe(OPTP) optical density photocarriers phase modulation antireflection
作者简介 E-mail: li_gaofang@163.com李高芳(1983-),女,河南人,博士,讲师,主要从事THz技术及应用方面的研究.
  • 相关文献

参考文献20

  • 1张丽,任广军,姚建铨.A new photonic crystal fiber gas sensor based on evanescent wave in terahertz wave band:design and simulation[J].Optoelectronics Letters,2013,9(6):438-440. 被引量:6
  • 2Ahn J,Efimov A V,Averitt R D,et al. Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses[J]. Opt. Express, 2003,11 (20) : 2486-2496.
  • 3Cooke D G, MacDonald A N, Hryciw A, et al. Transient terahertz conductivity in photoexcited silicon nanocrystal films[J]. Phys. Rev. B, 2006,73 : 193311.
  • 4Li M,Wu B,Ekahana S A,et al. Size and surface effects on transient photoconductivity in CdS nanobelts probed by time-resolved terahertz spectroscopy [J]. Appl. Phys. Lett. ,2012,101:091104.
  • 5Patrick Parkinson,Christopher Dodson, Hannah J Joyce,et al. Noncontact measurement of charge carrier lifetime and mobility in GaN nanowires[J]. Nano Lett., 2012,12: 4600-4604.
  • 6LI Gao-fang,XUE Xin, LIN Xian, et al. Evolution of tera- hertz conductivity in ZnSe nanocrystal investigated with optical-pump terahertz-probe spectroscopy [ J]. Appl. Phys. A, 2014,116 : 45-50.
  • 7Georgi L Dakovski, Brian Kubera, Song Lan, et al. Finite pump-beam-size effects in optical pump-terahertz probe spectroscopy[J]. J. Opt. Soc. Am. B, 2006,23 : 139-141.
  • 8LIU Hong-wei, LU Jun-peng,Teoh Hao Fatt, et al. Defect engineering in CdSx Sel- x nanobelts: an insight into carri- er relaxation dynamics via optical pump-terahertz probe spectroscopy[J]. J. Phys. Chem. C, 2012,116: 26036- 26042.
  • 9Casper Larsen, David G Cooke, Peter Uhd Jepsenl. Fi- nite-difference time-domain analysis of time-resolved ter- ahertz spectroscopy experiments[J]. J. Opt. Soc. Am. B, 2011,28 :1308-1316.
  • 10Park H,Kim W R,Jeong H T,et al. Fabrication of dye- sensitized solar cells by transplanting highly ordered Tie2 nanotube arrays[J]. Sol. Energ. Mat. Sol. C, 2011,95 ( 1 ) : 184-189.

二级参考文献20

  • 1H. Du, SERS-based Photonic Crystal Fiber Sensing Platform, Proc. SPIE 6083, 74 (2006).
  • 2P. St. J. Russell, Science 299, 358 (2003).
  • 3M. Nielsen, C. Jacobsen, N. Mortensen, J. Folkenberg and H. Simonsen, Optics Express 12, 1372 (2004).
  • 4B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopou- los and Y. Fink, Nature 420, 650 (2002).
  • 5B1NG Pi-bin, LI Jian-quan, LU Ying, DI Zhi-gang and YAN Xin, Optoelectronics Letters 8, 0245 (2012).
  • 6Yuan Jin-Quan, Guo Zhen-Qiang and Ding Li-Yun, Optoelectronics Letters 6, 346 (2010).
  • 7M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O. Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin and D. J Richardson, Microstructured Fibers for Sensing Appli- cations, Proc. SPIE 6005, 60050E (2005).
  • 8T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen and H. R. Simonsen, Optics Ex- press 12, 4080 (2004).
  • 9C. M. B. Cordeiro, M. A. R. Franco, G. Chesinil, E. S. C. Barretto, R. Lwin, C. H. B. Curz and M C. J. Large, Optics Express 14, 13056 (2006).
  • 10B. Ung, A. Dupuis, K. Stoeffler, C. Dubois and M. Skorobogatiy, Opt. Soc. Am. B 28, 917 (2011).

共引文献17

同被引文献49

  • 1Shelby R A, Smith D R,Schultz S, Experimental verifica- tion of a negative index of refraction[J]. Science, 2001, 292:77-79.
  • 2Valentine J, Zhang S,Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 2008,455 : 376-380.
  • 3Moitra P,Yang Y,Anderson Z,et al. Realization of an all- dielectric zero-index optical metamaterial[J]. Nat Pho- ton,2013,7:791-795.
  • 4Schurig D,Mock J J,Justice B J,et al. Metamaterial elec- tromagnetic cloak at microwave frequencies[J]. Science, 2006,314: 977-980.
  • 5Zhou F,Bao Y,Cao W, et al. Hiding a realistic object u- sing a broadband terahertz invisibility cloak[J]. Sci, Rep. ,2011,1:78.
  • 6Liang D,Gu J,Han J,et al. Robust large dimension tera- hertz cloaking[J]. Adv. Mater. ,2012,24 : 916-921.
  • 7Poddubny A, Iorsh I, Belov P, et al. Hyperbolic metamate- rials[J]. Nat. Photon., 2013,7 : 948-957.
  • 8Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005,308 : 534-537.
  • 9Chen H, Padilla W J,Zide J M O,et al. Active terahertz metamaterial devices[J]. Nature, 2006,444: 597-600.
  • 10Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials [J]. Phys. Rev. Lett., 2008,101:047401.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部