期刊文献+

基于CHMM的TE过程在线故障检测

CHMM-Based On-line Fault Detection of TE Process
在线阅读 下载PDF
导出
摘要 随着工业过程的规模和复杂程度的增加,对于过程安全性和可靠性的要求进一步提高.为了准确及时地检测设备故障,提出了一种基于连续隐马尔可夫模型(CHMM)的在线故障检测方法.采用主元分析(PCA)方法对过程变量数据进行特征提取,利用变长度滑动窗口技术跟踪动态数据,并提出了一个新的实时统计量作为在线故障检测的量化指标,结合实时阈值实现了CHMM的在线故障检测.将该方法应用于田纳西-伊斯曼(TE)化工过程,并与基于PCA和动态主元分析(DPCA)方法的故障检测结果进行比较,能够较准确地检测到故障,验证了该方法的有效性. With the increasing of industrial process scale and complexity, the demand for safety and reliability of process improves further. In order to detect the equipment fault accurately and timely, an online fault detection method based on continuous hidden Markov model (CHMM) was proposed. The principal component analysis (PCA) approach was adopted to take feature extraction of the process variables, and the variable moving window technology was utilized to track dynamic data, then, a new real-time statistic was presented as a quantitative index of on-line fault detection, and combined with realtime threshold to implement CHMM-based on-line fault detection. Then the proposed method was carried out in Tennessee Eastman (TE) process. Also, the method could detect fault more accurately compared with PCA and dynamic principal component analysis (DPCA) based methods. The effectiveness of the proposed method was verified by the experimental results.
出处 《上海应用技术学院学报(自然科学版)》 2015年第3期254-259,共6页 Journal of Shanghai Institute of Technology: Natural Science
基金 国家自然科学基金重点资助项目(61034006)
关键词 连续隐马尔可夫模型 在线故障检测 主元分析 变长度滑动窗口 田纳西-伊斯曼过程 continuous hidden Markov model(CHMM) on-line fault detection principal component analysis(PCA) variable moving window Tennessee Eastman(TE) process
作者简介 曹立立(1989-),女,硕士生,主要研究方向为动态系统故障诊断与预报.E—mail:caolili0101@163.com 通信作者:方华京(1955-),男,教授,博士生导师,主要研究方向为动态系统故障诊断与预报.E-mail:hjfang.@mail.hust.edu.cn
  • 相关文献

参考文献14

  • 1蒋浩天.工业系统的故障检测与诊断[M].北京:机械工业出版社,2003..
  • 2Yu J B. Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring[J]. Journal of Process Control, 2010, 20(3): 344-359.
  • 3Rabiner L. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Pro- ceedings of the IEEE, 1989, 77(2): 257-286.
  • 4Samanta O, Bhattaeharya U, Parui S K. Smoothing of HMM parameters for efficient recognition of online handwriting[J]. Pattern Recognition, 2014, 47 (11) : 3614-3629.
  • 5Yu D, Deng L. Deep learning and its applications to signal and information processing[J]. Signal Process- ing Magazine, IEEE, 2011, 28(1): 145-154.
  • 6Yau C, Papaspiliopoulos O, Roberts G O, et al. Bayesian non-parametric hidden Markov models with applications in genomics [J]. Journal of the Royal Statistical Society: Series B (Statistical Methodolo- gy), 2011, 73(1): 37-57.
  • 7Sun W, Palazoglu A, Romagnoli J A. Detecting ab-normal process trends by wavelet-domain hidden Markov models I-J]. AIChE Journal, 2003, 49 (1) : 140-150.
  • 8Lee J M, Kim S J, Hwang Y, et al. Diagnosis of me- chanical fault signals using continuous hidden Markov model[J]. Journal of Sound and Vibration, 2004, 276(3/4/5) : 1065-1080.
  • 9Boutros T, Liang M. Detection and diagnosis of bearing and cutting tool faults using hidden Markov models[J]. Mechanical Systems and Signal Process- ing, 2011, 25(6): 2102-2124.
  • 10Zhou S Y, Wang S Q. On-line fault detection and diagnosis in industrial processes using hidden Markov model[J]. Developments in Chemical Engineering and Mineral Processing, 2005, 13(3/4): 397-406.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部