期刊文献+

基于水电用量的异常用户检测方法的研究 被引量:2

Abnormal User Detection Method Based on Water/Electricity Consumption
在线阅读 下载PDF
导出
摘要 传统的水电用户异常检测分别在用水和用电系统中进行,容易造成检测结果不准确或漏检。如何有效检测水电异常用户,对电力系统和用水系统提出了新的考验。以实际的水电用户数据为样本,对比了水电比聚类分析法、水量电量二维向量聚类分析法和基于SVM的异常检测法,并充分结合水量、电量数据,进行异常水电用户检测。结果表明,对于城市居民用户,相比其它两种算法,基于SVM的异常检测法可以更加准确、高效的检测出异常水电用户。 Traditional water/electricity user anomaly are detected respectively in the water and electricity system,vulnerable to inaccurate results or misdetection.So how to effectively detect abnormal water/electricity users is a challenge for the power system and water system.With the real water/electricity user data as sample,this paper compares the three methods:the water/electricity ratio clustering analysis method,water/electricity quantity two-dimensional vector clustering analysis method and anomaly test method based on SVM.And fully combined with the data of water/electricity quantity,abnormal water and electricity users are detected.The results show that,for urban users,anomaly test method based on SVM is the most accurate and effective in detecting the abnormal water and electricity users compared with other two methods.
出处 《电力与能源》 2015年第3期355-359,共5页 Power & Energy
关键词 水电用户 异常检测 聚类分析 SVM water/electricity users anomaly detection clustering analysis SVM
作者简介 罗飞鹏(1969),男,高级经济师,长期从事电力营销管理工作。
  • 相关文献

参考文献8

二级参考文献40

  • 1司风琪.电站性能在线监测中的数据检验和热力系统模型研究[M].南京:东南大学,2001..
  • 2胡华进.火电机组性能监测问题的研究[M].南京:东南大学,1998..
  • 3ZHOU Chuan—guang(周传光).Study on On—line Process Data Reconciliation Integrated Technology Based on Simulation and Artificial Neural Networks(基于过程模拟与神经网络的测量数据在线校正技术集成化研究)[M].Guangzhou(广州):South China University of Technology(华南理工大学),1999..
  • 4KONG Ling(孔玲).Development of General Chemical Engineering Process Data Reconciliation System(通用型化工过程测量数据校正软件的开发)[M].Qingdao(青岛):Qingdao Institute of Chemical Technology(青岛化工学院),2000..
  • 5YUAN Yong—gen(袁永根) LI Hua—sheng(李华生).Process System Data Rectification Technology(过程系统测量数据校正技术)[M].Beijing(北京):China Petrochemical Press(中国石化出版社),1996..
  • 6[1]Forrest S, Perrelason AS, Allen L, Cherukur R. Self_Nonself discrimination in a computer. In: Rushby J, Meadows C, eds. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1994. 202~212.
  • 7[2]Ghosh AK, Michael C, Schatz M. A real-time intrusion detection system based on learning program behavior. In: Debar H, Wu SF, eds. Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000. 93~109.
  • 8[3]Lee W, Stolfo SJ. A data mining framework for building intrusion detection model. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 120~132.
  • 9[4]Vapnik VN. The Nature of Statistical Learning Theory. New York: Spring-Verlag, 1995.
  • 10[5]Lee W, Dong X. Information-Theoretic measures for anomaly detection. In: Needham R, Abadi M, eds. Proceedings of the 2001 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 2001. 130~143.

共引文献308

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部