期刊文献+

外界载荷对圆柱涡激振动能量转换的影响 被引量:13

Effects of external load on energy conversion of vortex-induced vibrating cylinder
在线阅读 下载PDF
导出
摘要 为了提高涡激振动的能量收集效率,研究外界载荷对三相耦合圆柱绕流涡激振动能量转换的影响.使用矩阵法分析外界载荷对涡激振动能量转换系统阻尼和固有频率的影响,并使用准稳态近似理论推导获得机电耦合系统电压输出的准稳态解析式.在此基础上,应用OpenFOAM开源平台对Navier-Stokes、二阶范德波尔方程和高斯定律进行涡激振动耦合计算.结果表明:当外界载荷增大时,系统阻尼先增大后减小,圆柱振幅曲线峰值和锁振区域先减小后增大,输出电压和电压曲线的锁振区域相应增大,而固有频率基本不变;系统输出功率随着载荷的增大出现先增大后减小的趋势;当满足98<Re<103时,输出电压及功率较大,可以实现圆柱涡激振动高效率的能量转换. Impact of external load on energy conversion of vortex-induced vibration in three-phase coupling flow around cylinder was studied in order to improve its efficiency of energy harvesting. The effects of external load on the systematic damping and natural frequency of energy conversion in vortex-induced vibration were examined using matrix method. A quasi-steady solution form of voltage output in the electromechanical coupling system was induced via the quasi-steady approximation method. Based on the open-source platform of OpenFOAM software, coupling calculation for the vortex-induced vibration was taken on Navier-stokes equation, second-order Van der pol equation and Gauss law. Results showed that, with the increase of external load, the systematic damping first increases then decreases, the peak values and the lock-in region of the cylinder amplitude curve first decreases then increases, and the output voltage and the lock-in region of the voltage curve increases, while the natural frequency basically remains unchanged. In the range of Reynolds number from 98 to 103, the considerable values of voltage and power output can make high-efficiency energy conversion of cylindrical vortex-induced vibration.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第6期1093-1100,共8页 Journal of Zhejiang University:Engineering Science
基金 高等学校博士学科点专项科研基金优先发展资助项目(20120191130003)
关键词 圆柱绕流 涡激振动 三相耦合 反馈 能量转换 flow around circular cylinder vortex induced vibration three-phase coupling feedback energy transforming
作者简介 王军雷(1988-),男,博士生,从事圆柱绕流涡激振动方向研究.E-mail:just4pipi@126.com 通信联系人:冉景煜,男,教授,博导.E-mail:ranjy@cqu.edu.cn
  • 相关文献

参考文献22

  • 1GAO X, SHIH W H, SHIH W Y. Flow energy harvesting using piezoelectric cantilevers with cylindrical extension [J]., IEEE Transactions on Industrial Electronics, 2013, 60(3): 1116-1118.
  • 2XU B, CHEN X. Liquid flow-induced energy harvesting in carbon nanotubes: a molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2012, 15(4): 1164-1168.
  • 3LIU H,TAY C J, QUAN C,et al.Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power [J].Journal of Microelectromechanical Systems, 2011, 20(5):1131-1142.
  • 4ALLEN J J, SMITS A J. Energy harvesting eel [J]. Journal of Fluids and Structures, 2001, 15(3): 629-640.
  • 5TAYLOR G W, BURNS J R, KAMMANN S M, et al. The energy harvesting eel: a small subsurface ocean/river power generator [J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 539-547.
  • 6KWON,S D. A T-shaped piezoelectric cantilever for fluid energy harvesting [J]. Applied Physics Letters, 2010, 97(16): 164-102(1-3).
  • 7MEHMOOD A, ABDELKEFI A, HAJJ M R, et al. Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder [J]. Journal of Sound and Vibration, 2013, 332(19): 4656-4667.
  • 8ZHU M L,LEIGHTON G. Dimensional reduction study of piezoelectric ceramics constitutive equations from 3-D to 2-D and 1-D [J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2008, 55(11): 2377-2383.
  • 9ANAGNOSTOPOULOS P, BEARMAN P. Response characteristics of a vortex-excited cylinder at low reynolds numbers[J]. Journal of Fluids and Structures, 1992, 6(1): 39-50.
  • 10BERNITSAS M M, RAGHAVAN K, BEN-SIMON Y, et al. VIVACE (vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow[J]. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130(4): 041101.

二级参考文献19

  • 1李宁,张景绘.压电分流阻尼系统的重置开关控制[J].西安交通大学学报,2006,40(7):841-845. 被引量:1
  • 2李宁,张景绘.连续梁的压电分流阻尼模型[J].应用力学学报,2006,23(3):398-402. 被引量:5
  • 3Hagood N W, Von F A. Damping of Structural Vibrations with Piezoelectric Materials and Passive Electrical Networks [J]. Journal of Sound and Vibration,1991, 146(2) : 243 -268.
  • 4Reza Moheimani S O. A Survey of Recent Innovations in Vibration Damping and Control Using Shunted Piezoelectric Transducers [ J ]. IEEE Transactions on Control Systems Technology, 2003, 11 (4) : 482 - 494.
  • 5Lesieutre G A. Vibration Damping and Control Using Shunted Piezoelectric Materials [ J ]. Shock and Vibration Digest, 1998, 30 (3) : 187 -195.
  • 6Park C H, Inman D J. Enhanced Piezoelectric Shunt Design [ J ]. Shock and Vibration, 2003,35 (10) :127 -133.
  • 7Fleming A J, Behrens S, Moheimani S O R. Synthetic Impedance for Implementation of Piezoelectric Shunt - damping Circuits [J]. Electronics Letters,2000, 36(18) : 1525 - 1526.
  • 8Fleming A J, Behrens S, Moheimani S O R. Optimization and Implementation of Multimode Piezoelectric Shunt Damping Systems [ J ]. IEEE/ASME Transactions on Mechatronics ,2002 ,7 ( 1 ) : 87 - 94.
  • 9Fleming A J, Moheimani S O R. Improved Current and Charge Amplifiers for Driving Piezoelectric Loads, and Issues in Signal Processing Design for Synthesis of Shunt Damping Circuits [ J ]. Journal of Intelligent Material Systems and Structures, 2004, 6 (4) : 482 - 487.
  • 10Clark W W. Vibration Control with State - switched Piezoelectric Materials[ J]. Journal of Intelligent Material Systems and Structures, 2000, 11 (4) : 262 - 271.

共引文献11

同被引文献83

引证文献13

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部