期刊文献+

视频监控中的人群逃离行为检测与定位 被引量:2

Crowed escape anomalous behavior detection and localization in video surveillance
在线阅读 下载PDF
导出
摘要 对视频监控系统中的人群异常逃离行为检测和定位的问题进行研究。提出一种不仅能检测出异常事件,而且能够识别异常的可能位置的新算法。人们通常本能地逃离异常或者危险发生的地点。基于这个理论,提出了一种新的检测发散中心的算法:发散中心暗示异常发生的可能位置。首先建立正常和异常的人群运动模型。通过光流场来计算出运动矢量的位置和方向,并获得矢量的交点。然后使用KNN最邻近搜索法获得交点集的密集区域即发散中心。最后,通过判断运动速度、能量和发散中心识别逃离行为。对多个视频数据进行实验测试,结果验证了所提方法是有效的。 In order to study the problem of detection and localization of crow d escape anomalous behavior in video surveillance systems ,a new scheme was proposed which can not only detect the abnormal events , but also detect the possible location of abnormal events .People usually instinctively escape from a place w here abnormal or dangerous events occur .Based on this inference ,a novel algorithm of detecting the divergent center was proposed:the divergent center indicates possible place where abnormal events occur . Firstly , the model of crow d motion in both the normal and abnormal situations had been made . Intersections of vector were obtained through solving the straight line equation sets ,where the straight line Equation sets were determined by the location and direction of motion vector which were calculated by the optical flow .Then the dense regions of intersection sets ,i.e .,the divergent center ,were obtained by using KNN .Escape detection was finally judged according to the speed and energy of motion and the divergent center .Experiments on several datasets showed that the proposed method is valid on crowd escape behavior detection .
出处 《黑龙江大学工程学报》 2015年第2期68-73,共6页 Journal of Engineering of Heilongjiang University
基金 国家自然科学基金资助项目(61175126) 中央高校基本科研业务费专项资金项目(HEUCFZ1209) 教育部博士点基金项目(20112304110009)
关键词 人群逃离 异常行为 能量 定位 crow d escape anomalous behavior energy localization
作者简介 陈春雨(1974-),男,黑龙江哈尔滨人,副教授,博士,研究方向:图像处理、智能信号处理,E-mail:springrain@hrbeu.edu.cn。
  • 相关文献

参考文献15

  • 1Cong Y, Yuan J, Liu J. Sparse reconstruction cost for abnormal event detection [J]. In IEEE Conference on Computer Vision Pattern Recognition, 2011:3 449- 3 456.
  • 2Zhong H, Shi J, Visontai M. Detecting unusual activity in video[J]. In Proc. 2004 IEEE Comput. Vis. Pat- tern Recog. , 2004, 2: II-819-826.
  • 3Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic [J]. Nature, 2000, 407 (6 803): 487-490.
  • 4Junior[J]C S J, Musse S R, Jung C R. Crowd analysis using computer vision techniques: A survey [J]. IEEE Signal Process. Lett., 2010, 27 (5): 66-77.
  • 5Mehran R, Oyama A, Shah M. Abnormal crowd be- havior detection using social force model [J]. in Proc. IEEE Conf. Comput. Vision Pattern Recognit. , 2009: 935-942.
  • 6Kratz L, Nishino K. Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models [J]. in Proc. IEEE Conf. Comput. Vision Pat- tern Recognit. , 2009:1 446-1 453.
  • 7Lin S F, Chen[J]Y, Chao H X. Estimation of number of people in crowded scenes using perspective transforma-tion [J]., IEEE Trans. Systems, Man, Cybern. A, 2001, 31 (6).. 645-654.
  • 8Popoola O P, Wang K. Video-Based Abnormal Human Behavior Recognition--A Review [J]. IEEE Trans. Syst. Man Cybern Part C 2012, (42).- 865-878.
  • 9Liu X, Lin L, Yan S, et al. Integrating spatio-temporal context with multiview representation for object recog- nition in visual surveillance [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21 (4) : 393-407.
  • 10Chan A, Vasconcelos N. Modeling, clustering, and segmenting video with mixtures of dynamic textures [J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2008, 30 (5): 909-926.

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部