期刊文献+

基于改进SFS特征选择BP识别算法 被引量:3

BP network recognition algorithm based on improved SFS feature selection
在线阅读 下载PDF
导出
摘要 特征选择在BP神经网络算法中起着重要作用,顺序前向选择算法(SFS算法)利用前向搜索叠加的方式,从众多的原始特征中获得对分类识别算法最有效的主要特征,实现样本特征维数压缩。提出一种改进SFS特征选择算法,设计了加权判别函数和测试反馈停止准则。实验证明,改进算法能有效压缩样本特征维数,提高BP网络收敛速度和正确识别率。 Feature selection plays an important role in the BP neural network algorithm. Sequence forward selection(SFS) algorithm can realize the compression of sample feature dimension by using a way of forward search superimposition to get the most efficient main feature of classification recognition algorithm from numerous original features. An improved SFS feature selection algorithm is proposed in this paper. Weighted discriminant function was designed and feedback stopping criterion was tested. The experimental results show that the improved algorithm can effectively compress the sample feature dimension,as well as improve BP network astringency and correct recognition rate.
出处 《现代电子技术》 北大核心 2015年第12期1-4,共4页 Modern Electronics Technique
基金 湖南省创新基金支持项目(202c26214300674)
关键词 特征选择 SFS BP网络 收敛速度 feature selection SFS BP astringency
作者简介 朱旭东(1982-),男,吉林双辽人,硕士研究生。主要研究方向为信号处理。 梁光明(1970-),男,湖南涟源人,副教授,硕士生导师。主要研究方向为信号处理。 冯雁(1984-),男。广西贵港人,硕士研究生。主要研究方向为信号处理。
  • 相关文献

参考文献8

  • 1MENEGATTI E, PRETTO A, PAGELLO E. Testing onmidirec- tional vision- based Mont Carlo localization under occlusion [C]// Proceeding of IEEE/RSJ 2004 International Conference on Intelligent Robots and Systems. [S.I.I.. 1EEE, 2004, 3: 2487- 2493.
  • 2计智伟,胡珉,尹建新.特征选择算法综述[J].电子设计工程,2011,19(9):46-51. 被引量:46
  • 3姚旭,王晓丹,张玉玺,权文.特征选择方法综述[J].控制与决策,2012,27(2):161-166. 被引量:211
  • 4李敏,卡米力.木依丁.特征选择方法与算法的研究[J].计算机技术与发展,2013,23(12):16-21. 被引量:23
  • 5REZATOFIGHIA Seyed Hamid, SOLTANIAN-ZADEH Ha- mid. Automatic recognition of five types of white blood cells in peripheral blood [J]. Computerized Medical Imaging and Graphics, 2011, 35: 333-343.
  • 6PUDIL P, NOVOVICOVA J, KITTLER J. Floating search methods in feature selection [J]. Pattern Recognition Letters 1994, 15: 1119-1125.
  • 7GUYON I. An introduction to variable and feature selection [J]. Journal of Machine Learning Research, 2003, 3 : 1157-1182.
  • 8易超群,李建平,朱成文.一种基于分类精度的特征选择支持向量机[J].山东大学学报(理学版),2010,45(7):119-121. 被引量:3

二级参考文献110

  • 1李烨,尹汝泼,蔡云泽,许晓鸣.基于离散化的支持向量机特征选择[J].计算机工程,2006,32(11):16-17. 被引量:4
  • 2HAN JIAWEI, KAMBER M. Data mining: concepts and techniques[ M]. 2nd ed. Beijing: China Machine Press, 2006.
  • 3BLUM A L, LANGLEY P. Selection of the relevant features andexamples in machine learning [J]. Artifical Intelligence, 1997, 97:245-271.
  • 4KUDO M, SKLANSKY J. Comparison of algorithms that select features for pattern classifiers[ J]. Pattern Recognition, 2000, 33( 1 ) :25-41.
  • 5VAPNIK V N. The nature of statistical learning theory [ M ]. New York: Springer Vedag, 2000.
  • 6HETHCH S, BAY S D. The UCI KDD archive [ DB/ OL ]. [ 2009-04-08 ]. http ://kdd. ics. uci. edu.
  • 7KING R D. Statlog databases [ DB/OL ]. [ 2009-08-09 ]. http ://www. 1 lace. up. pt./ML/statlog/datasetsmtml.
  • 8Langley P.Seleetion of relevant features in machine learning[J].In:Proe.AAAI Fall Symposium on Relevanee,1994:140-144.
  • 9Langley P,Iba W.Average-case analysis of a nearest neighbour algorithm[C] //Proceedings of the Thirteenth International Joint Con-Ferenee on Artifieial Intelligence,1993:889-894.
  • 10Jain A,Zongker D.Feature seleetion:evaluation,application,and Sniall sample pedortnanee[J].IEEE transactions on pattern analysis and machine intelligence,1997,19(2):153-158.

共引文献273

同被引文献29

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部