期刊文献+

基于ARMA的桥梁监测信息预测技术研究 被引量:9

Study of Predicting Techniques Based on ARMA Used to Process Bridge Monitoring Information
在线阅读 下载PDF
导出
摘要 为解决桥梁结构健康监测中长期累积的海量监测数据处理问题,采用数据挖掘中的时间序列分析方法,利用自回归移动平均(ARMA)技术对桥梁历史静态监测量进行分析,直接得出关于其过去行为的有关结论,进而推断其未来发展趋势。与基于因果关系的结构式模型预测法不同,ARMA无需明确模型结构或边界条件,而是直接从统计学的角度预测变量未来发展情况。采用该技术对西安白蛇峪大桥应变监测数据进行分析,试验结果显示出较高的预测精度;采用该技术对重庆偏岩子大桥的应变、挠度、裂缝、倾斜监测量进行预测,试验统计结果表明,ARMA单步预测误差小于10%的置信度在97%以上,在工程实际中具有可实用性,可为桥梁结构的安全预警提供重要参考依据。 In order to process the enormous amount of monitoring data accumulated during me- dium or long-term bridge structure health monitoring, the time series analysis methods for data i- dentification are adopted and the autoregressive moving average (ARMA) technique was used, to analyze the existing static monitoring data of the bridge, and based on which the related conclu- sions concerning the load bearing behavior of the bridge in the past can be drawn directly, and in turn the future condition of the bridge can be deduced. Different from the structural model predic- tion method based on causal relation, ARMA can, with out clear model structure or boundary con- dition, directly predict the future condition of variables from the view of statistics. The technique set f.orth has been used for the analysis of the stress monitoring data of Baisheyu Bridge in Xiran. The statistic data of the test show that the errors of ARMA single step prediction less than 10% bring about the confidence level above 97 %. The technique is practical in actual engineering projects, and can prorde reference data for security warning of bridge structure.
出处 《世界桥梁》 北大核心 2015年第3期44-48,共5页 World Bridges
基金 交通运输部西部交通建设科技项目(2013-364-740-600) 重庆市科委新产品创新青年科技人才培养项目(cstc2013kjrc-qnrc30001)
关键词 桥梁 健康监测 数据 时间序列 ARMA 预警 预测 bridge health monitoring data time series ARMA warning prediction
作者简介 作者筒介:唐浩(1983-),男,高级工程师,2004年毕业于西安交通大学机械工程及自动化专业,获学士学位,2010年毕业于西安交通大学机械制造及自动化专业,获博士学位(E—mail:tanghaol@cmhk.com)。
  • 相关文献

参考文献9

二级参考文献27

  • 1阎红亮.客运专线轨道结构选型研究[J].铁道建筑,2005,45(2):26-28. 被引量:12
  • 2沈锐利.悬索桥主缆系统设计及架设计算方法研究[J].土木工程学报,1996,29(2):3-9. 被引量:183
  • 3卢祖文.高速铁路轨道技术综述[J].铁道工程学报,2007,24(1):41-54. 被引量:60
  • 4HONG Wei-Chiang. Electric load forecasting by support vector model [J]. Applied Mathematical Modelling, 2009, 33(5): 2444- 2454.
  • 5WITTEN I H, FRANK E. Data Mining: Practical machine learning tools and techniques [M]. San Francisco: Morgan Kaufmann, 2006.
  • 6GOIA A, MAY C, FUSAI G. Functional clustering and linear regression for peak load forecasting [J]. International Journal of Forecasting, 2010, 26(4): 700 711.
  • 7PAPPAS S S, EKONOMOU L, KRAMOUSANTAS D C, CHATZARAKIS G E, KATSIKAS S K, LIATSIS P. Electricity demand loads modeling using auto regressive moving average (ARMA) models[J]. Energy, 2008, 33(9): 1353-1360.
  • 8NOWlCKA-ZAGRAJEK J, WERON R. Modeling electricity loads in California: ARMA models with hyperbolic noise [J]. Signal Processing, 2002, 82(12): 1993-1915.
  • 9WANG Bo, TAI Neng-ling, ZHAI Hai-qing, YE Jian, ZHU Jia-dong, QI Liang-bo. A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting [J]. Electric Power Systems Research, 2009, 78(10): 1679-1685.
  • 10KALAITZAKIS K, STAVRAKAKIS G S, ANAGNOSTAKIS E M. Short-term load forecasting based on artificial neural networks parallel implementation [J]. Electric Power Systems Research, 2002, 63(3): 185-196.

共引文献32

同被引文献72

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部