期刊文献+

Effects of systematic phase errors on optimized quantum random-walk search algorithm

Effects of systematic phase errors on optimized quantum random-walk search algorithm
在线阅读 下载PDF
导出
摘要 This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this algorithm, a model of the algorithm with phase errors is established, and the relationship between the success rate of the algorithm, the database size, the number of iterations, and the phase error is determined. For a given database size, we obtain both the maximum success rate of the algorithm and the required number of iterations when phase errors are present in the algorithm. Analyses and numerical simulations show that the optimized quantum random-walk search algorithm is more robust against phase errors than Grover's algorithm. This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this algorithm, a model of the algorithm with phase errors is established, and the relationship between the success rate of the algorithm, the database size, the number of iterations, and the phase error is determined. For a given database size, we obtain both the maximum success rate of the algorithm and the required number of iterations when phase errors are present in the algorithm. Analyses and numerical simulations show that the optimized quantum random-walk search algorithm is more robust against phase errors than Grover's algorithm.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期155-163,共9页 中国物理B(英文版)
基金 Project supported by the National Basic Research Program of China(Grant No.2013CB338002)
关键词 quantum search algorithm quantum random walk phase errors ROBUSTNESS quantum search algorithm, quantum random walk, phase errors, robustness
作者简介 Corresponding author. E-mail: 2010thzz@sina.com
  • 相关文献

参考文献21

  • 1Grover L 1996 Proceedings of the 28th Annual ACM Symposium on Theory of Computing (New York: ACM Press) p. 212.
  • 2Long G L 2001 Phys. Rev. A 64 022307.
  • 3Li T, Bao W S, Lin W Q, Zhang H and Fu X Q 2014 Chin. Phys. Lett. 31 050301.
  • 4Wang X, Bao W S and Fu X Q 2011 Chin. Sci. Bull. 56 484.
  • 5Chuang I L, Gershenfeld N and Kubinec M 1998 Phys. Rev. Lett. 80 3408.
  • 6Zhang J F, Lu Z H, Deng Z W and Shan L 2003 Chin. Phys. 12 700.
  • 7Zheng S B 2005 Chin. Phys. 14 2222.
  • 8Sun J, Lu S F, Liu F and Yang L P 2012 Chin. Phys. B 21 010306.
  • 9Zhang Y Y, Hu H P and Lu S F 2014 Chin. Phys. B 23 040309.
  • 10Long G L, Li Y S, Zhang W L and Tu C C 2000 Phys. Rev. A 61 042305.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部