期刊文献+

基于光流反馈的单目视觉三维重建 被引量:12

Monocular Camera Three Dimensional Reconstruction Based on Optical Flow Feedback
原文传递
导出
摘要 提出一种基于光流反馈的单目视觉三维(3D)重建方法,实现对场景快速、准确的3D立体化建模。由帧间光流场建立更为稳健的同名像点匹配关系,同时运用五点算法估计摄像机的相对位姿,以构建稀疏点云和初始网格。从运动视觉分析的角度寻求多视重构的求解方法,将重建模型反馈至重建过程,用各视图像的偏差驱动模型变形。将粗略、不准确的原始网格曲面经过致密的非刚性变形,调整至精确的曲面。在统一计算设备架构下,利用图形处理器对光流算法进行并行加速,显著提高了重构算法运行的实时性。室内真实场景下的重建结果证明了所提算法的可行性与准确性。 A monocular three dimensional(3D) reconstruction technique based on optical flow feedback is proposed to achieve fast and accurate 3D stereoscopic modeling in the real scene. Corresponding pixel pairs are robustly matched by inter-frame optical flow fields and the five-point algorithm is employed to determine relative pose of the moving camera, therefore sparse point cloud is generated and initial crude mesh is built. In the proposed method,multi-view reconstruction is implemented from perspective of vision method on motion analysis. The reconstruction model is fed-back to the reconstruction process and the model is deformed by utilizing the bias-driven of each view.The coarse and inaccurate original mesh surface is adjusted to the exact surface through a dense non-rigid deformation. Under the compute unified device architecture, the optical flow algorithm is optimized in parallel mode by using the graphic processing unit hardware and real-time performance of the reconstruction algorithm is significantly improved. The experimental results obtained in realistic indoor scenario demonstrate the effectiveness and accuracy of the proposed algorithm.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第5期228-236,共9页 Acta Optica Sinica
基金 国家自然科学基金(61105033 61175087)
关键词 机器视觉 三维重建 光流 场景流 统一计算设备架构 machine vision three dimensional reconstruction optical flow scene flow compute unified device architecture
作者简介 李秀智(1979-),男,博士,讲师,主要从事智能机器人导航、机器视觉等方面的研究。E—mail:xiuzhi.1ee@163.com。 通信联系人。E-mail:yanglinligong@sina.com
  • 相关文献

参考文献21

  • 1杨玉峰,吴振森,曹运华.基于三维重建理论的目标光谱散射特性研究[J].光学学报,2012,32(9):288-294. 被引量:9
  • 2贾松敏,王可,李秀智,徐涛.基于变分模型的单目视觉三维重建方法[J].光学学报,2014,34(4):162-168. 被引量:13
  • 3X Li, S Jia, W Cui, et al.. Consistent map building by a mobile robot equipped with stereo sensor and LRF[C]. IEEE International Conference on Computer Science and Automation Engineering, 2011, 3: 100-104.
  • 4T Brox, J Malik. Large displacement optical flow: descriptor matching in variational motion estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(03): 500-513.
  • 5S Vedula, S Baker, P Rander, et al.. Three-dimensional scene flow[C]. Proceedings of the International Conference on Computer Vision, Corfu, 1999: 722-729.
  • 6S Vedula, P pomder, R collins, et al.. Three-dimensional scene flow[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 475-480.
  • 7Y Zhang, C Kambhamettu. On 3D scene flow and structure recovery from multl-view image sequences[J]. IEEE Transactions on Systems, Man, and Cybernetics (Part B), 2003, 33(4): 592-606.
  • 8R Li, S Sclaroff. Multi-scale 3D scene flow from binocular stereo sequences[J]. Computer Vision and Image Understanding, 2008, 110(1): 75-90.
  • 9F Huguet, F Devernay. A variational method for scene flow estimation from stereo sequences[C]. Proceedings of the International Conference on Computer Vision, Los Alamitos, 2007: 1-7.
  • 10Richard A. Newcombe, A J Davision. Live dense reconstruction with a single moving camera[C]. Computer Vision and Pattern Flecongnition (CVPR), 2010: 1498-1505.

二级参考文献61

  • 1Sequeira V, Goncalves J G M, Ribeiro M I. 3D reconstruction of indoor environments. In: Proceedings of International Conference on Image Processing. Lausanne, Switzerland: IEEE, 1996. 405-408.
  • 2Wang R, Luebke D. Efficient reconstruction of indoor scenes with color. In: Proceedings of the 4th International Conference on 3D Digital Imaging and Modeling. Banff, Canada: IEEE, 2003. 402-409.
  • 3Debevec P E, Taylor C J, Malik J. Modeling and rendering architecture from photographs: a hybrid geometry-and-imaged-based approach. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New Orleans, USA: ACM, 1996. 11-20.
  • 4Gibson S, Howard T. Interactive reconstruction of virtual environments from photographs, with application to scene-of-crime analysis. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology. Seoul, Korea: ACM, 2000. 41-48.
  • 5Hu B, Brown C. Interactive indoor scene reconstruction from image mosaics using cuboid structure. In: Proceedings of the Workshop on Motion and Video Computing. Orlando, USA: IEEE, 2002. 208-213.
  • 6Tomasi C, Kanade T. Shape and motion from image streams under orthography: a factorization approach. International Journal of Computer Vision, 1992, 9(2): 137-154.
  • 7Polleyfeys M, Gool L V, Vergauwen M, Verbiest F, Cornelis K, Tops J. Visual modeling with a hand-held camera. International Journal of Computer Vision, 2004, 59(3): 207-232.
  • 8Polleyfeys M, Nister D, Frahm J M, Akbarzadeh A, Mordohai P, Clipp B. Detailed real-time urban 3D reconstruction from video. International Journal of Computer Vision, 2008, 78(2-3): 143--167.
  • 9Shi J, Tomasi C. Good features to track. In: Proceedings of Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 1994. 593-600.
  • 10Wang Z H, Wu F C, Hu Z Y. MSLD: a robust descriptor for line matching. Pattern Recognition, 2009, 42(5): 941-953.

共引文献48

同被引文献114

  • 1尹潘龙,徐光柱,雷帮军,曹维华.Kinect下深度信息获取技术及其在三维目标识别中的应用综述[J].集成技术,2013,2(6):94-99. 被引量:5
  • 2刘铁军,史泽林,于海斌.一种基于图像纹理的模板匹配算法[J].红外与激光工程,2005,34(3):319-323. 被引量:9
  • 3游素亚.立体视觉研究的现状与进展[J].中国图象图形学报(A辑),1997,2(1):17-24. 被引量:102
  • 4张春森.三维运动分析中的运动-立体双匹配约束[J].光学精密工程,2007,15(6):945-950. 被引量:7
  • 5郑建冬,张丽艳,周玲,王小平.基于单数码相机自由拍摄的空间点定位[J].航空学报,2007,28(6):1521-1526. 被引量:9
  • 6Ahmidi Narges,Gregory DH,lshii Lisa,et al.Surgical task and skill classification from eye tracking and tool motion in minimally invasive surgery[J].Medical Image Computing and Computer-Assisted lntervention,20l 0(63):295-302.
  • 7Bernier O,Cheung Mnn Chan P,Bouguet A.Fast Nonparametric Belief Propagation for Real-Time Stereo Articulated Body Tracking[J].Computer Vision and hnage Under standing,2009,113(1):29-47.
  • 8Zijian Zhao.Real-time 3D visual tracking of laparoscopic instruments for robotized endoscope holder[J].Bio-Medical Materials and Engineering,2014(24) :2665 -2672.
  • 9Rodney Dockter, Robert Sweet MD, Timothy Kowalewski PhD.A Fast,Low-Cost, Computer Vision Approach for Tracking Surgical Tools[C].Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 20 14)Septemberl 4-18, 2014,Chicago,lL,USA.
  • 10Austin Reiter,Peter K.Allen.An Online Learning Approach To In-Vivo Tracking Using Synergistic Features[C].Proceedings of The 2010IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22,2010,Taipei,Taiwan.

引证文献12

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部