期刊文献+

Fully degradable brush polymers with polycarbonate backbones and polylactide side chains 被引量:2

Fully degradable brush polymers with polycarbonate backbones and polylactide side chains
原文传递
导出
摘要 Novel, fully degradable brush polymers with polycarbonate backbones and polylactide side chains were prepared by a three-step reaction that included the terpolymerization of cyclohexene oxide (CHO) and benzyl glycidyl ether (BGE) with CO2, hydrogenation of the resultant terpolymers to afford the terpolymers with 1,2-glycerol carbonate units and the 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) mediated ring-opening polymerization of lactide on the polycarbonate backbone. The brush copolymer bearing polylactide (PLA) chains from racemic lactide (rac-LA) has a single glass-transition temperature of 58.5 ℃, whereas the copolymers with (L)-PLA side chains exhibited a melting enthalpy at 135.8 ℃ with AHm=25.04 J/g and were further shown by a WAXD study to be a typical semicrystalline polymer with sharp diffraction peaks at 20 values of 16.7° and 18.9°. Novel, fully degradable brush polymers with polycarbonate backbones and polylactide side chains were prepared by a three-step reaction that included the terpolymerization of cyclohexene oxide(CHO) and benzyl glycidyl ether(BGE) with CO2, hydrogenation of the resultant terpolymers to afford the terpolymers with 1,2-glycerol carbonate units and the 1,8-diazabicyclo[5.4.0]undec-7-ene(DBU) mediated ring-opening polymerization of lactide on the polycarbonate backbone. The brush copolymer bearing polylactide(PLA) chains from racemic lactide(rac-LA) has a single glass-transition temperature of 58.5 °C, whereas the copolymers with(L)-PLA side chains exhibited a melting enthalpy at 135.8 °C with ?Hm=25.04 J/g and were further shown by a WAXD study to be a typical semicrystalline polymer with sharp diffraction peaks at 2θ values of 16.7° and 18.9°.
出处 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第6期999-1004,共6页 中国科学(化学英文版)
基金 supported by the National Natural Science Foundation of China(21134002 and 21104007) the Program for Changjiang Scholars and Innovative Research Teams in Universities(IRT13008) Xiao Bing Lu gratefully acknowledges the Chang Jiang Scholars Program(T2011056)of the Ministry of Education of China
关键词 carbon dioxide POLYCARBONATE TERPOLYMERIZATION brush polymer DEGRADABILITY 聚碳酸酯 聚合物刷 可降解 侧链 聚乳酸 骨干网 三元共聚物 玻璃化转变温度
作者简介 Corresponding author (email: xblu@dlut.edu.cn)
  • 相关文献

参考文献20

  • 1Tsarevsky NV, Matyjaszewski K. "Green" atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev, 2007, 107: 2270-2299.
  • 2Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, Klok HA. Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applica- tions. Chem Rev, 2009, 109:5437-5527.
  • 3Siegwart, Daniel J., Oh JK, Matyjaszewski, K. ATRP in the design of functional materials for biomedical applications. Prog Polym Sci,2012, 37:18-37.
  • 4Lee HI, Pietrasik J, Sheiko SS, Matyjaszewski K. Stimuli-responsive molecular brushes. Prog Polym Sci, 2010, 35:24-44.
  • 5Djalali R, Li SY, Schmidt M. Amphipolar core-shell cylindrical brushes as templates for the formation of gold clusters and nanowires. Macromolecules, 2002, 35:42824288.
  • 6Du JZ, Tang LY, Song WJ, Shi Y Wang J. Evaluation of polymeric micelles from brush polymer with poly(epsilon-caprolactone)-b- poly(ethylene glycol) side chains as drug carrier. Biomaeromolecules, 2009, 10:2169-2174.
  • 7Yuan WZ, Yuan JY, Zhang FB, Xie XM, Pan CY. Synthesis, charac- terization, crystalline morphologies, and hydrophilicity of brush co- polymers with double crystallizable side chains. Maeromoleeules, 2007, 40:9094-9102.
  • 8Xu X, Huang J. Synthesis and characterization of amphiphilic co- polymer of linear poly(ethylene oxide) linked with [poly(styrene-co- 2-hydro:yethyl methacrylate)grafbpoly(epsilon-caprol actone)] using sequential controlled polymerization. J Polym Sci Part A: Polym Chem, 2006, 44:467-476.
  • 9Yu Y, Zou J, Yu L, Jo W, Li YK, Law WC, Cheng C. Functional polylactide-g-paclitaxel-poly(ethylene glycol) by azide-alkyne click chemistry. Macromolecules, 2011,44:4793M-800.
  • 10Lu XB, Ren WM, Wu GP. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Acc Chem Res, 2012, 45:1721-1735.

同被引文献10

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部