摘要
针对传统微分求积法的局限性,提出了一种新的微分求积法.该方法采用7次B样条函数构造了区间上的插值基函数,并结合微分求积法的基本思想,形成了基于7次样条的微分求积法.该方法不仅保留了传统微分求积法计算复杂度小、精度高等优点,还具有数值稳定性好,节点可以取很多的优点.数值算例表明了该方法的有效性.
Considering the limitation of the traditional differential quadrature method,a novel different-tial quadrature method is put forward. The interpolation basis function on interval are build by suing seven times B spline function. Cmbined with the basic idea of DQ method, the differential quadrature method based on seven times spline function is put forward. This method not only retains the traditional differential quadrature method which can achieve very high precision, but also has good numerical stability,and the node can take many advantages. Numerical examples show the effectiveness of the proposed method.
出处
《陕西科技大学学报(自然科学版)》
2015年第3期177-180,共4页
Journal of Shaanxi University of Science & Technology
基金
陕西省教育厅专项科研计划项目(12JK0534)
关键词
7次B样条函数
插值基函数
微分求积法
对流占优方程
seven times B spline function
interpolation basis function
differential quadrature method
convection-dominate equation
作者简介
张瑞平(1963~),男,陕西渭南人,副教授,研究方向:微分方程数值解