期刊文献+

有限理性与广义向量变分不等式问题的良定性 被引量:2

Bounded Rationality and Well-Posedness for Generalized Vector Variational Inequalities Problems
原文传递
导出
摘要 利用非线性标量化的技巧定义了广义向量变分不等式问题的理性函数,利用有限理性模型对广义向量变分不等式问题引入了一种新的良定性,这种良定性统一了广义向量变分不等式问题的Levitin-Polyak良定性与Hadamard良定性,且进一步的给出了广义向量变分不等式问题的各种良定性的充分条件. In this paper, we define a rationality functions for generalized vector variational inequalities problems by a nonlinear scalarization method. Using bounded rationality model of generalized vector variational inequalities problems, we introduce a new well-posedness for generalized vector variational inequalities problems, which unifies its Hadamard and Levitin- Polyak well-posedness. Furthermore, we give some sufficient conditions on various types of well-posedness for generalized vector variational inequalities problems.
出处 《数学的实践与认识》 北大核心 2015年第9期176-182,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(11161008) 贵州省科学技术基金([2013]2235) 贵州省教育厅自然科学研究项目(黔教科2010055)
关键词 非线性标量化函数 有限理性模型 良定性 广义向量变分不等式 nonlinear scalarization functions bounded rationality models well-posedness generalized vector variational inequality
  • 相关文献

参考文献10

  • 1Dontehev A L, Zolezzi T. Well-posed Optimization Problems [M]. Springer, Berlin, 1993.
  • 2Lucchetti R. Revalski J(eds)., Recent Developments in Well-posed Variational Problems [M]. Kluwer Academic Publishers, Dordrecht, 1995.
  • 3俞建.关于良定问题[J].应用数学学报,2011,34(6):1007-1022. 被引量:25
  • 4Giannessi F. Theorems of alternative, quadratic programs and complementary problems. In Cottle, R.W. and Giannessi, F and Lions, J.L. (eds.), Variational Inequality and Complementary Problems [M]. Wiley, New York, 1980.
  • 5Chen G Y, Huang X X, Yang, X Q. Vector Optimization: Set-Valued and Variational Analysis [M]. Springer, Berlin, 2005.
  • 6Crespi, G P, Guerraggio A, Rocca M. Well Posedness in vector optimization problems and vector variational inequalities [J]. J Optim Theory Appl, 2007, 132: 213-226.
  • 7Huang X X, Yang X Q, Zhu D L. Levitin-Polyak well-posedness of variational inequality problems with functional constraints [J]. J Glob Optim, 2009, 44(2): 159-174.
  • 8Zui X, Zhu D L, Huang, X X. Levitin-Polyak well-posedness in generalized vector variational in- equality problem with functional constraints[J]. Math Meth Oper Res, 2008, 67: 505-524.
  • 9Miglierina E, Molho E, Rocca M. Well-posedness and scalarization in vector optimization [J]. J Optim Theory Appl, 2005, 126: 391-409.
  • 10Aliprautis C D, Border K C. Infinite Dimensional Analysis [M]. Springer, Berlin, 1999.

二级参考文献16

  • 1中国科学院数学研究所.对策论讲义[M].北京:人民教育出版社,1960..
  • 2Tykhonov A N. On the Stability of the Functional Optimization Problem. USSR Comp. Math. Phys., 1966: 4:28-33.
  • 3Levitin E S, Polyak B T. Convergence of Minimizing Sequences in Conditional Extremum Problems. Soviet Math. Dohl., 1966, 7:764-767.
  • 4Dontchcv A L, Zolezzi T. Well-posed Optimization Problems. Berlin: Springer-Verlag, 1993.
  • 5Lucchetti R, Revalski J (eds). Recent Developments in Well-posed Variational Problems. Dordrecht: Kluwer Academic Publishers, 1995.
  • 6Simon H A. The New Science of Management Decision. New Jeresy: Prentice-Hall Inc., 1977.
  • 7Rubinstein A. Modeling Bounded Rationality. Massachusetts Institute of Technology, 1998.
  • 8Anderlini L, Canning D. Structural Stability Implies Robustness to Bounded Rationality. J. of Economic Theory, 2001, 109:395-422.
  • 9Yu C, Yu J. On Structural Stability and Robustness to Bounded Rationality. Nonlinear AnalysisTMA, 2006, 65:583-592.
  • 10Yu C, Yu J. Bounded Rationality in Multiobjective Games. Nonlinear Analysis TMA, 2007, 67: 930-937.

共引文献24

同被引文献17

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部