摘要
利用非线性标量化的技巧定义了广义向量变分不等式问题的理性函数,利用有限理性模型对广义向量变分不等式问题引入了一种新的良定性,这种良定性统一了广义向量变分不等式问题的Levitin-Polyak良定性与Hadamard良定性,且进一步的给出了广义向量变分不等式问题的各种良定性的充分条件.
In this paper, we define a rationality functions for generalized vector variational inequalities problems by a nonlinear scalarization method. Using bounded rationality model of generalized vector variational inequalities problems, we introduce a new well-posedness for generalized vector variational inequalities problems, which unifies its Hadamard and Levitin- Polyak well-posedness. Furthermore, we give some sufficient conditions on various types of well-posedness for generalized vector variational inequalities problems.
出处
《数学的实践与认识》
北大核心
2015年第9期176-182,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金(11161008)
贵州省科学技术基金([2013]2235)
贵州省教育厅自然科学研究项目(黔教科2010055)
关键词
非线性标量化函数
有限理性模型
良定性
广义向量变分不等式
nonlinear scalarization functions
bounded rationality models
well-posedness
generalized vector variational inequality