期刊文献+

基于LabVIEW IMAQ的移动车辆牌照识别 被引量:3

Mobile Vehicle License Plate Recognition Based on the LabVIEW IMAQ
在线阅读 下载PDF
导出
摘要 车牌识别是指通过图像处理、模式识别和统计分析等方法从实时车辆图像中提取车牌字符信息,从而确定车辆身份的技术。通过对车牌识别中的图像采集与处理、车牌定位、字符分割和字符识别这4个核心技术的研究,在Lab VIEW平台上,利用IMAQ强大的图像处理功能,对USB摄像机获得的实现车牌图像进行格式转换,灰度变换以及二值变换等预处理,将边缘提取与图像投影两种方法相结合精确定位车牌,最后根据特征匹配的方法识别出车牌字符信息。结果表明,基于IMAQ程序可以很好的对车牌图像进行处理,并在平均时间为3s左右情况下完成对车牌字符的识别。 The license plate recognition extracts license plate characters through image processing, pattern recognition and statistical analysis,to determine the vehicle identification technology.Through the research of the four key technolo-gy of collecting and processing the image,locating the license plate,separating and identifying the character on the li-cense plate recognition.We offer to process real time license plate image first by converting format, transform into gray and binarization,which is collected by USB camera,and locate license plate by combining with edge extraction and im-age projection. Finally recognize the character information of the license plate based on the method of feature matching, using powerful image processing function of IMAQ on the platform of LabVIEW. The results show that, the license plate image can be well processed by the procedure based on IMAQ, and the average time of discerning the license plate character is about 70ms.
出处 《长春理工大学学报(自然科学版)》 2015年第2期103-107,共5页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 车牌 字符识别 LABVIEW IMAQ LabVIEW The license plate Character recognize
作者简介 作者简介:付思卓(1988-),男,硕士研究生,E—mail:599194833@qq.com 通讯作者:韩文波(1970-),女,副教授,E-mail:hanwenbo@cust.edu.cn
  • 相关文献

参考文献6

二级参考文献12

  • 1孟章荣.各种颜色模型选用需求分析[J].中国图象图形学报(A辑),1996,1(3):238-241. 被引量:20
  • 2王磊,陶梅.精通Labview8.0[M].北京:电子工业出版社.2003.
  • 3Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[Z]. CVPR99, Fort Colins, 1999.
  • 4Toyama K, Krumm J, Brumitt B et al. Wall-flower: Principle and practice of background maintenance[Z]. ICCV, Kerkyra, Greece, 1999.
  • 5Rittscher C, Kato J, Joga S. A probabilistic background model for tracking[Z]. ECCV, Dublin Ireland, 2000.
  • 6Ridder A, Munkelt O, Kirchner H. Adaptive Kalman-filtering[Z]. ICRAM'95, Istanbul, 1995.
  • 7Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction[Z]. ECCV, Dublin, Ireland, 2000.
  • 8Gutchess D, Trajkovic M, Cohen-Solal E. A background model initialization algorithm for video surveillance[Z]. ICCV, Vancouver, Canada, 2001.
  • 9LeBourgeois F. Robust multifont OCR system from gray level images[Z]. ICDAR, Ulm, 1997.
  • 10申焱华,王汝杰,雷震山.LabVIEW入门与提高范例教程[M].北京:中国铁道出版社,2007..

共引文献193

同被引文献24

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部