期刊文献+

Asymptotic Stability of Periodic Solution for Compressible Viscous van der Waals Fluids 被引量:1

Asymptotic Stability of Periodic Solution for Compressible Viscous van der Waals Fluids
原文传递
导出
摘要 This paper is concerned with the asymptotic stability of the periodic solution to a one-dimensional model system for the compressible viscous van der Waals fluid in Eulerian coordinates. If the initial density and initial momentum are suitably close to the average density and average momentum, then the solution is proved to tend toward a stationary solution as t -→∞. This paper is concerned with the asymptotic stability of the periodic solution to a one-dimensional model system for the compressible viscous van der Waals fluid in Eulerian coordinates. If the initial density and initial momentum are suitably close to the average density and average momentum, then the solution is proved to tend toward a stationary solution as t -→∞.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2014年第4期1113-1120,共8页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.10971215)
关键词 van der Waals fluid asymptotic stability global solution van der Waals fluid asymptotic stability global solution
  • 相关文献

参考文献13

  • 1Dafermos, C. Conservation laws with dissipation. Lakshmikantham V. Nonlinear Phenomena in Mathe?matical Sciences. Academic Press, New York, 1982.
  • 2Fan, T. A vanishing viscosity approach on the dynamics of phase transitions in van der Waals fluids. Jour. Diff. Equs., 103: 179-204 (1993).
  • 3Hattori, H. The Riemann problem and the existence of weak solutions to a system of mixed-type in dynamic phase transition. Journal Diff. Equs., 146: 287-319 (1998).
  • 4Huang, F.M., Li, J., Shi, X.D. Asymptotic behavior of solutions to the full compressible Navier-Stokes equations in the half space. Commun. Math. Sci., 8: 639-654 (2010).
  • 5Huang, F.M., Matsumura, A., Shi, X.D. Viscous shock wave and boundary layer solution to an inflow problem for compressible viscous gas. Commun. Math. Phys., 239: 261-285 (2003).
  • 6Huang, F.M., Shi, X.D., Wang, Y. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic and Related Models, 3: 409-425 (2000).
  • 7Hoff, D., Khodja, M. Stability of coexisting phases for compressible van der Waals fluids. SIAM J. Appl. Math., 53: 1-14 (1993).
  • 8Hsieh, D.Y., Wang, X.P. Phase transition in van der Waals fluids. SIAM J. Appl. Math., 57: 871-892 (1997).
  • 9Matsumura, A. Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas. Commun. Methods and Applications of Analysis, 8(4): 645-666 (2001).
  • 10Mei, M., Liu, L., Wong, Y. Phase transitions in a coupled viscoelastic system with periodic initial-boundary condition: (I) existence and uniform boundedness. Discrete Cont. Dyn. Syst., B7: 825-837 (2007).

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部