期刊文献+

Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries 被引量:16

纳米结构过渡金属氧化物作为锂离子电池负极材料(英文)
原文传递
导出
摘要 The exploration for post-carbon electrode ma- terials for lithium-ion batteries has been a crucial way to satisfy the ever-growing demands for better performance with higher energy/power densities, enhanced safety, and longer cycle life. Transition metal oxides have recently re- ceived a great deal of attention as very promising anode materials due to their high theoretical capacity, good safety, eco-benignity, and huge abundance. The present work re- views the latest advances in developing novel transition metal oxides, including FeeO3, Fe3O4, CO3O4, CoO, NiO, MnO, Mn203, Mn3O4, MnO2, MOO3, Cr2O3, Nb2O5, and some binary oxides such as NiCO2O4, ZnCO2O4, MnCO2O4 and CoMn2O4. Nanostructuring and hybrid strategies ap- plicable to transition metal oxides are summarized and analyzed. Furthermore, the impacts of binder choice and heat treatment on electrochemical performance are discussed. 为了满足锂离子电池的更高能量/功率密度、更长循环寿命、更好安全性能的发展需求,对于碳负极以外的新型负极材料的探索越来越重要.其中,过渡金属氧化物由于具有较高的理论比容量、较好的安全性能、储量丰富和对环境友好等优点而有望成为新一代高能量锂离子电池负极材料.本文探讨了包括Fe2O3,Fe3O4,Co3O4,Co O,Ni O,Mn O,Mn2O3,Mn3O4,Mn O2,Mo O3,Cr2O3和Nb2O5在内的过渡金属氧化物及一些二元氧化物,如Ni Co2O4,Zn Co2O4,Mn Co2O4和Co Mn2O4的最新研究进展.对改善过渡金属氧化物电化学性能的纳米化及合成复合材料的方法进行了总结和分析.讨论了黏结剂的选择及热处理手段对电化学性能的影响.
出处 《Science Bulletin》 SCIE EI CAS CSCD 2015年第9期823-838,M0003,I0007,共18页 科学通报(英文版)
基金 supported by the National Basic Research Program of China(2013CB934103) the National Natural Science Foundation of China(21173054) Science & Technology Commission of Shanghai Municipality(08DZ2270500)
关键词 Lithium-ion battery Anode material Transition metal oxide Nanostructure 过渡金属氧化物 锂离子电池 纳米结构 电化学性能 阳极 四氧化三铁 四氧化三锰 Cr2O3
作者简介 e-mail: asyu@ fudan.edu.cn
  • 相关文献

参考文献77

  • 1Recham N, Chotard IN, Dupont L et al (2010) A 3.6 V lithiumbased fluorosulphate insertion positive electrode for lithium-ion batteries. Nat Mater 9:68-74.
  • 2Park KS, Benayad A, Kang 01 et al (2008) Nitridation-driven conductive Li4TiS012 for lithium ion batteries. I Am Chern Soc 130:14930-14931.
  • 3Amine K, Belharouak I, Chen ZH et al (2010) Nanostructured anode material for high-power battery system in electric vehicles. Adv Mater 22:3052-3057.
  • 4Chen IS, Tan YL, Li CM et al (2010) Constructing hierarchical spheres from large ultrathin anatase Ti02 nanosheets with nearly 100 % exposed (001) facets for fast reversible lithium storage. I Am Chern Soc 132:6124-6130.
  • 5Liu I, Cao GZ, Yang ZG et al (2008) Oriented nanostructures for energy conversion and storage. ChemSusChem 1 :676-697.
  • 6Poizot P, Laruelle S, Grugeon S et al (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496-499.
  • 7Chen J, Xu LN, Li WY et al (2005) IX-Fe203 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17:582-586.
  • 8Wang ZY, Wang ZC, Madhavi S et al (2012) o-Fe-Os-mediated growth and carbon nanocoating of ultrafine Sn02 nanorods as anode materials for Li-ion batteries. J Mater Chern 22:2526-2531.
  • 9Larcher 0, Masquelier C, Bonnin 0 et al (2003) Effect of particle size on lithium intercalation into IX-Fe203' J Electrochem Soc 150:AI33-AI39.
  • 10Arico AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366-377.

同被引文献143

引证文献16

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部