期刊文献+

融合AP聚类视觉字典容量获取及其PLSA评价研究

AP Clustering Visual Dictionary Integration Capacity Acquisition and Evaluation of PLSA
在线阅读 下载PDF
导出
摘要 针对目前需要大量实验方可获得视觉字典的不足,提出了一种一次既可获得合理的视觉字典方法。首先,采用尺度不变特征转换SIFT[1](Scale-invariant feature transform)局部描述子构建场景图像数据集的特征矩阵;其次,采用AP聚类算法对场景图像的特征矩阵进行聚类,获得聚类中心数,也就是合理的视觉字典容量,并结合K-means算法获得共现矩阵,再用PLSA算法构建概率模型,然后用SVM[2]进行分类得出正确率。最后,用该方法与传统的通过大量实验的获得合理的视觉容量的方法进行对比分析主题数K(PLSA的参数之一)对实验结果影响。 For a Iarge number of experiments needed to quaIify for the current Iack of visuaI dictionary,one can propose a rea-sonabIe method for visuaI dictionary.FirstIy,SIFT feature scenes of IocaI descriptors to buiId a matrix of image data sets. SecondIy,AP cIustering aIgorithm for image feature matrix scene cIustering obtain poIy cIass center number,which is a rea-sonabIe visuaI dictionary capacity,combined with the K-means aIgorithm to obtain the co-occurrence matrix,then PLSA aIgo-rithm to construct a probabiIity modeI,and then use SVM arrive at a correct cIassification rate.
出处 《工业控制计算机》 2015年第4期114-115,117,共3页 Industrial Control Computer
关键词 SIFT描述子 AP聚类算法 视觉字典容量 PLSA PLSA SIFT AP visuaI dictionary capacity
  • 相关文献

参考文献5

二级参考文献44

  • 1杜选.基于支持向量机的车牌字符识别研究与应用[J].计算机系统应用,2008,17(8):43-45. 被引量:3
  • 2侯胜利,胡金海,李应红.基于混沌变量的航空发动机性能监控与故障诊断[J].航空动力学报,2005,20(2):314-317. 被引量:10
  • 3赵晖,荣莉莉,李晓.一种设计层次支持向量机多类分类器的新方法[J].计算机应用研究,2006,23(6):34-37. 被引量:20
  • 4廉飞宇,付麦霞,张元.基于支持向量机的车辆牌照识别的研究[J].计算机工程与设计,2006,27(21):4033-4035. 被引量:12
  • 5A Oliva, A Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope [ J]. International Journal of Computer Vision,2001,42(3) :145- 175.
  • 6A Oliva, A Torralba. Building the gist of a scene: the role of global image features in recognition[ J] .Progress in Brain Research,2006, 155:23 - 36.
  • 7T Serre, A Oliva, T A Poggio. A feedforward architecture accounts for rapid categorization[ A ]. In Proceedings of the National Academy of Science [ C ]. New York: PNAS, 2007. 6424 - 6429.
  • 8A Vailaya, M Figueiredo, A Jain, H Zhang. Image classification for content-based indexing [ J ].IEEE. Transactions on Image Processing, 2001,10(1) : 117 - 130.
  • 9E B Sudderth,A Torralba,W T Freeman,A S Willsky. Learning hierarchical models of scenes,objects and parts[A] .In Proceedings of Tenth IEEE International Conference on Vision[C]. USA: IEEE., 2005.1331 - 1338.
  • 10L F Fei, P Perona. A bayesian hierarchical model for learning natural scene categodes[ A]. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[ C]. USA: IEEE., 2001,2.524 - 531.

共引文献211

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部