期刊文献+

基于LBP的眼睛开闭检测方法 被引量:6

Eyes state detection method based on LBP
在线阅读 下载PDF
导出
摘要 在基于机器视觉的疲劳驾驶预警系统中通过驾驶人员眼睛的状态来判断其是否疲劳是最直接和有效的途径,对眼睛的开与闭这两个基本状态的检测是判断疲劳的一个关键技术。针对红外视频人脸图像序列,提出一种基于LBP纹理检测算子的快速准确人眼开闭检测方法。该方法首先精确提取眼睛区域,然后利用对光照具有鲁棒性的LBP纹理检测算子检测眼睛区域纹理并计算其二阶矩、熵和边际分布二阶矩作为特征向量,最后使用SVM对特征向量进行分类以达到开闭检测的目的。大量实验结果表明,该方法不仅具有较高的检测准度,而且能完全满足实时要求。 Eyes state, such as opening and closing, detection is a very important technology in driver fatigue warning system based on machine vision, since the opening/closing states of driver' s eyes are the most direct and effective signal to indicate whether he/she is tired. This paper proposed an eyes state detection method based on LBP aiming at the infrared video face image sequences. Firstly, it used AdaBoost and y-axis projection accurately extract the eye region. Then, it calculated some statistic texture feature based on LBP. Finally, it used SVM to classify the feature as eye state, such as opening or closing. A large number of experimental results show that the proposed method not only has high detection accuracy, but also has high efficiency.
出处 《计算机应用研究》 CSCD 北大核心 2015年第6期1897-1901,共5页 Application Research of Computers
基金 四川省科技支撑计划资助项目(2011GZ0187 2012RZ0005) 四川省科技厅创新苗子工程资助项目(20132074)
关键词 局部二值模式 红外图像 纹理检测 开闭检测 支持向量机 LBP infrared video texture detection opening and closing detection SVM
作者简介 姚胜(1988-),男,四川南充人,硕士研究生,主要研究方向为基于机器视觉的汽车主动安全技术、数字图像处理; 李晓华(1973-),女,陕西韩城人,副教授,博士,主要研究方向为图像处理、模式识别(1xhw@scu.edu.cn); 张卫华(1977-),男,四川成都人。讲师,主要研究方向为数字图像处理; 周激流(1963-),男,四川成都人,教授,博导,主要研究方向为图像处理、人脸识别、无线网络、智能计算.
  • 相关文献

参考文献17

  • 1Liu Cejun,Ye T J.Run-off-road crashes:an on-scene perspective,Technical Report DOT HS 811 500[R].[S.l.]:Natianal Highway Traflic Safety Administration,2011.
  • 2Knipling R R,Wang J S.Crashes and fatalities related to driver drowsiness/fatigue[EB/OL].[2013-02].http:ntl.bts.gov/lib/jpodocs/repts_ te/1004.pdf.
  • 3Reddy M S,Narasimha B,Suresh E,et al.Analysis of EOG signals using wavelet transform for detecting eye blinks[C]//Proc of International Conference on Wireless Communications and Signal Processing.[S.l.]:IEEE Press,2010:1-4.
  • 4Chambayil B,Singla R,Jha R.EEG eye blink classification using neural network[C]//Proc of World Congress on Engineering.2010:2-5.
  • 5Yang J H,Mao Zhihong,Tijerina L,et al.Detection of driver fatigue caused by sleep deprivation[J].IEEE Trans on Systems,Man and Cybernetics,Part A:Systems and Humans,2009,39(4):694-705.
  • 6Liu C C,Hosking S G,Lenném G.Predicting driver drowsiness using vehicle measures:recent insights and future challenges[J].Journal of Safety Research,2009,40(4):239-245.
  • 7Vural E,Cetin M,Ercil A,et al.Drowsy driver detection through facial movement analysis[M]//Human-Computer Interaction.Berlin:Springer,2007:6-18.
  • 8Sukno F M,Pavani S K,Butakoff C,et al.Automatic assessment of eye blinking patterns through statistical shape models[M]//Computer Vision Systems.Berlin:Springer,2009:33-42.
  • 9Ortega A,Sukno F,Lleida E,et al.AV@CAR:a Spanish multichannel multimodal corpus for in-vehicle automatic audio-visual speech recognition[C]//Proc of LREC.2004.
  • 10Le H,Dang T,Liu Feng.Eye blink detection for smart glasses[C]//Proc of IEEE International Symposium on Multimedia.[S.l.]:IEEE Press,2013:305-308.

二级参考文献6

  • 1田娥,莫易敏,廖张华.基于红外光源的驾驶员眼睛实时监测[J].计算机工程,2007,33(7):225-226. 被引量:6
  • 2YANG Re,WEIBEL A.A real-time face tracker[C]//Proceedings of ACV 96,Florida,USA:142-147.
  • 3SUN C,TALBOT H,OURSELIN S,et al.Improved Automatic Skin Detection in Color Images[C]//Pros.V2th Digital Image Computing:techniques and applications,Dec,2003:10-12.
  • 4MANOJ S,JEZKIEL Ben-Arie.Pose Invariant Face Detection[C]//Proc of conference focused on Video/Image Processing and Multimedia Communications,Zagneb,Cmatia,2003.
  • 5孙世新.基于肤色分割的人脸检测算法研究[D].成都:电子科技大学,2006.
  • 6李亚利,王生进,胡斌,丁晓青.基于改进型抛物线Hough变换的眼睛特征提取[J].清华大学学报(自然科学版),2010,50(1):100-103. 被引量:4

共引文献3

同被引文献25

引证文献6

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部