期刊文献+

竖向激励下斜拉桥的内共振动力响应分析 被引量:6

Dynamic Response Analysis of Internal Resonance for Cable-stayed Bridges under Vertical Excitation
在线阅读 下载PDF
导出
摘要 将斜拉桥简化为单自由度振子-索模型,对振动方程进行线性简化;采用Matlab程序和Ansys程序分别对简化模型进行模态分析。索桥频率比分别取0.98、1.00和1.04,在模型支座处施加竖向加速度激励,进行时程分析,求解了系统的动力响应。分析结果表明,单自由度振子-索模型分析斜拉桥的振动问题是有效的和可行的。当索桥频率比在1∶1附近时,拉索与振子的振动存在耦合效应,产生内共振;在简谐支座竖向加速度激励下,系统的动力响应存在瞬态阶段和稳态阶段,响应峰值出现在瞬态阶段,拉索振动以第1阶模态振型为主;拉索动索力和拉索与振子间的相互作用在稳态阶段的幅值均出现漂移现象,拉索动索力变化幅度剧烈。因此,在斜拉桥设计和索力测试中要考虑索桥内共振的影响。 A cable-stayed bridge was simplified by a single-freedom-oscillator-cable model and the vibration equation was linearly simplified. Modal analysis was done with Matlab program and Ansys program respectively. Frequency ratio between a cable and the bridge is 0.98, 1.00 and 1.04. Vertical acceleration excitation was acted on the model at the supports. Time-history analysis was done to solve the system dynamic responses. Analysis re- suits show that it is effective and feasible to solve the vibration problems of a cable-stayed bridge with a single-free- dom-oscillator-cable model. When frequency ratio is close to 1: 1, the cable vibration is coupled with the oscillator vibration and internal resonance occurs. The system dynamic responses are divided into a transient stage and a steady stage. The peak values appear at the transient stage. The cable vibration is characterized with the first vibration mode. Peak values of the dynamic tension force and the interanction between the cable and the oscillator drift from the center in steady stage. Dynamic tension forces change sharply. Therefore, considerations must be given on the internal resonance in cable-stayed bridges and cable force measuring.
出处 《科学技术与工程》 北大核心 2015年第11期100-105,共6页 Science Technology and Engineering
基金 国家自然科学基金青年项目(51308214) 上海市城乡建设和交通委员会软科学研究项目(建管2013-004-001) 河南省教育厅(12B560010)资助
关键词 斜拉桥 内共振 支座激励 动力响应 频率比 cable-stayed bridge internal resonance support excitation dynamic response frequency ratio
作者简介 赵洋(1978-),男,博士研究生,副教授。E—mail:zyqqingquan@qq.com
  • 相关文献

参考文献15

  • 1Hagedorn P, Schifer B. On non-linear free vibrations of an elastic ca- ble. International Journal of Non-linear Mechanics, 1980; 15: 333-340.
  • 2Rega G, Benedettini F. Planar non-linear oscillations of elastic cables under superharmonic resonance conditions. Journal of Sound and Vi- bration, 1989 ; 132 ( 3 ) :353-381.
  • 3Fujino Y, Warnitchai P, Pacheco B M. An experimental and analyti- cal study of autoparametric resonance in a 3 DOF model of cable- stayed beam. Nonlinear Dynamics, 1993 ; 4 ( 2 ) : 111-138.
  • 4Warnitchai P, Fujino Y, Susumpow T. A nonlinear dynamic model for cables and its application to a cable-structure system. Journal of Sound and Vibration, 1995 ;187 (4) :695-712.
  • 5亢战,钟万勰.斜拉桥参数共振问题的数值研究[J].土木工程学报,1998,31(4):14-22. 被引量:97
  • 6Georgakis C T, Macdonald J H G, Taylor C. A. Nonlinear analysis of wind-induced cable-deck interaction. IABSE Conference on Cable- supported Bridges Challenging Technical Limits, Seoul,2001:12-14.
  • 7Gattulli V, Lepidi M. Nonlinear interactions in the planar dynamics of cable-stayed beam. International Journal of Solids and Structures, 2003 ;40(18) :4729-4748.
  • 8陈水生,孙炳楠.斜拉桥索-桥耦合非线性参数振动数值研究[J].土木工程学报,2003,36(4):70-75. 被引量:56
  • 9Lorenzo R. Modeling of cable-structure interaction in cable-stayed bridges and excitation of their auto parametric response under stochas- tic loading. Bristol : University of Bristol, 2005.
  • 10王波,徐丰,张海龙.端部激励下空间倾斜拉索非线性振动特性研究[J].振动与冲击,2009,28(5):172-175. 被引量:7

二级参考文献38

  • 1赵跃宇,杨相展,刘伟长,王连华.索-梁组合结构中拉索的非线性响应[J].工程力学,2006,23(11):153-158. 被引量:20
  • 2汪至刚.大跨度斜拉桥拉索的振动与控制[D].杭 州:浙江大学,2000.
  • 3A H 奈克 D T 穆克.非线性振动[M].北京:高等教育出版社,1996..
  • 4Warnitchai P, Fujino Y, Susumpow T. A non-linear dynamic model for eables and its application to a eable structure system [J].Journal of Sound and Vibration, 1995, 187 (4):584 - 601.
  • 5G. Tagata. Harmonically forced finite amplitude vibration of a string. Journal of Sound and Vibration, 1977, 483 - 492, 51 (4).
  • 6Yu Z, Xu Y L, Mitigation of three-dimensional Vibration of inclined sag cable using discrete oil dampers-I. Formulation [ J ]. Journal of Sound and Vibration, 1998,214 (4) : 659 - 673.
  • 7Xu YL, Zhan S, Ko J M, et al. Experimental study of vibration mitigation of bridge stay cables [J]. Journal of Structural Engineering. 1999, 125 (9):977-986.
  • 8Wu Q, Takahashi K, Nakamura S. Non-linear response of cables subjected to periodic support excitation considering cable loosening[ J ]. Journal of Sound and Vibration , 2004,271 (2) 453 - 463.
  • 9Wu Q, Takahashi K, Chen B. Influence of Cable Loosening on Nonlinear Parametric Vibrations of Inclined Cables, Structural Engineering and Mechanics ,2007, 25 ( 3 ) :219 - 237.
  • 10Wu Q. , Takahashi K. , Nakamura S. The effect of cable loosening on seismic response of a prestressed concrete cablestayed bridge [ J]. Journal of Sound and Vibration, 2003, 268 : 71 - 84.

共引文献137

同被引文献64

  • 1迟世春,林少书.结构动力模型试验相似理论及其验证[J].世界地震工程,2004,20(4):11-20. 被引量:74
  • 2刘聪,)黄世成,朱安祥,江志红.苏通长江公路大桥设计风速的计算与分析[J].应用气象学报,2006,17(1):44-51. 被引量:24
  • 3梅葵花,吕志涛,孙胜江.CFRP拉索的非线性参数振动特性[J].中国公路学报,2007,20(1):52-57. 被引量:21
  • 4汪正兴,任文敏,陈开利.斜拉索杠杆质量减振器的减振分析[J].工程力学,2007,24(11):153-157. 被引量:16
  • 5Gattulli V, Martinelli L, Perotti F, et al.. Nonlinear oscillations of cables under harmonic loading using analytical and finite element models [J]. Computer Methods in Applied Mechanics and Engineering, 2004,193 (I/2) .. 69-85.
  • 6Lilien J L, Pinto Da Costa A. Vibration amplitudes caused by parametric excitation of cable stayed struc- tures[J]. Journal of Sound and Vibration, 1994,174 (1) :69-90.
  • 7Yamaguchi H, Fujino Y. Stayed Cable Dynamics and Its Vibration Control[C]. In: Proceeding of the Inter- national Symposium of Advances in Bridge Aerody- namics, Rotterdam: Balkema, 1998 .. 235-253.
  • 8Fujino Y,Warnitchai P,Pacheco B M. An experimen- tal and analytical study of auto parametric resonance in 3D of model of cable-stayed-beam[J]. Nonlinear Dynamics, 1993,4:111 138.
  • 9Tagata G. Harmonically forced finite amplitude vibra- tion of a string[J]. Journal of Sound and Vibration, 1977, (4) :483-492.
  • 10Wu Q, Takahashi K, Nakamura S. Non linear re- sponse of cables subjected to periodic support excita- tion considering cable loosening[J]. Journal of Sound and Vibration, 2004,27 (1/2) 453-463.

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部