期刊文献+

融合上下文信息的社会网络推荐系统 被引量:4

Social network recommendaton system mixing contex information
在线阅读 下载PDF
导出
摘要 上下文环境和社会网络信息已经成为推荐系统所需的重要信息来源,在推荐系统中融入这些信息将进一步改进推荐系统的精度和用户满意度。为了提高用户对推荐系统的满意度,提出一种融入上下文信息与社交网络信息的个性化推荐系统CS。该算法应用随机决策树划分原始的用户-商品评分矩阵来进行上下文信息的处理,使得具有相似上下文信息的评分被分为一组。随后应用矩阵因式分解来预测用户对未评分项的预测。为了整合社交网络信息,在考虑上下文信息的环境下提出了一种融入社会网络关系的增强推荐模型,使用一种基于信任度的皮尔逊相关系数来衡量用户的相似度。在真实的实验数据集上进行验证,表明CS系统推荐较传统的基于上下文的和基于社会网络的推荐算法在性能上和推荐性能上有了很大的改善。 Contexts and social network information is valuable information for building an accurate recommender system. The merging of such information could further improve accuracy of the system and user satisfaction. This paper proposes the context and social( CS) network,which is novel context-aware recommender system incorporating elaborately processed social network information,in order to increase the user satisfaction on the recommendation system. The contextual information happens by applying random decision trees to partition the original user-item-rating matrix such that the ratings with similar contexts are together. The matrix factorization functionality is to predict missing preference of a user for an item using the partitioned matrix. An enhanced recommendation model aided by social relationships considering the context information is proposed. A trust-based Pearson Correlation Coefficient is proposed to measure user similarity. Real datasets based experiments showed that CS enhances its performance compared with traditional recommendation algorithms based on context and social networks.
出处 《智能系统学报》 CSCD 北大核心 2015年第2期293-300,共8页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(61403156 61403155) 江苏省高校自然科学基金资助项目(13KJB520002 14KJB520005)
关键词 上下文 信息 社会网络 矩阵因式分解:推荐 协同过滤 context information social network matrix factorization recommendation collaborative filtering
作者简介 李慧,女,1979年生,讲师,博士研究生,主要研究方向为智能信息处理、社会网络分析、计算机技术及应用。主持并完成江苏省自然科学基金1项,参与国家自然科学基金2项,出版专著1部,发表学术论文20余篇。通信作者:李慧.E-mail:shufanzs@126.com. 马小平,男,1961年生,教授,博士,主要研究方向为控制理论及应用、计算机技术及应用。主持并完成多项科研项目,其中国家“863”项目1项、国家自然科学基金项目2项、江苏省自然科学基金项目3项、江苏省高校基础研究项目2项、大型企业横向科研项目20余项。 胡云,女,1978年生,副教授,主要研究方向为复杂网络分析理论及应用、数据挖掘、多Agent系统。主持并完成科研项目多项,其中国家自然科学基金项目1项,江苏省自然科学基金项目1项,参与出版专著1部,发表学术论文10余篇。
  • 相关文献

参考文献12

  • 1ZHAO Du, FU Xiaolong. Scalable and explainable friend recommendation in campus social network system [ J ]. Fron- tier and Future Development of Information Technology in Medicine and Education, 2014, 269( 1 ) : 457-466.
  • 2CHEN Cheng, MAO Chengjie, TANG Yong. Personalized recommendation based on implicit social network of re- searchers [ J ]. Pervasive Computing and the Networked World, 2013, 7719( 10): 97-107.
  • 3ZHONG Erheng, FAN Wei, YANG Qiang. Contextual col- laborative filtering via hierarchical matrix factorization [ C ]// Proceedings of the Siam Internatiohnal Conference on Data Mining. Texas, USA , 2012: 744-755.
  • 4RENDLE S, GANTNER Z, FREUDENTHALER C. Fast context-aware recommendations with faetorization machines [ C ]//Proceedings of the 34th International ACM SIGIR Conference. Beijing, China, 2011: 230-241.
  • 5BALTRUNAS L, LUDWIG B, RICCI F. Matrix factorization techniques for context aware recommendation [ C ]//Proceed- ings of the Fifth ACM Conference on Recommender Systems. Chicago, USA, 2011: 301-304.
  • 6YANG Xiwang, STECK H, LIU Yong. Circle-based recom- mendation in online social networks [ C ]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing, China, 2012: 1267- 1275.
  • 7NOEL J, SANNER S, TRAN K. New objective functions for social collaborative filtering [ C]//Proceedings of the 21th International Conference on World Wide Web. Lyon, France, 2012: 859-868.
  • 8XU Bin, BU Jiajun, CHEN Chun. An exploration of impro- ving collaborative recommender systems via user-item sub- ~oups[ C]//Proceedings of the 21st International Confer- ence on World Wide Web. Lyon, France, 2012: 21-31.
  • 9LIU Qiang, WANG Chengwei, XU Congfu. A modified PMF model incorporating implicit item associations [ C ~//Pro- ceedings of the International Conference on Tools with Artifi- cial Intelligence. Athens, Greece, 2012: 7-9.
  • 10JIANG Ming, CUI Peng, LIU Rui. Social contextual rec- ommendation[ C l//Proceedings of the 21st ACM Interna-tional Conference on Information and Knowledge Manage- ment. Maui, USA, 2012: 566-578.

同被引文献26

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部